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Abstract

The Web is the largest repository of knowledge in the world. Everyday
people contribute to make it bigger by generating new web data. Data never
sleeps. Every minute someone writes a new blog post, uploads a video or com-
ments on an article. Usually people rely on Web Search Engines for satisfying
their information needs : they formulate their needs as text queries and they
expect a list of highly relevant documents answering their requests. Being able
to manage this massive volume of data, ensuring high quality and performance,
is a challenging topic that we tackle in this thesis.

In this dissertation we focus on the Web of Data: a recent approach, orig-
inated from the Semantic Web community, consisting in a collective effort to
augment the existing Web with semistructured-data. We propose to manage
the data explosion shifting from a retrieval model based on documents to a
model enriched with entities, where an entity can describe a person, a product,
a location, a company, through semi-structured information.

In our work, we combine the Web of Data with an important source of
knowledge: query logs, which record the interactions between the Web Search
Engine and the users. Query log mining aims at extracting valuable knowledge
that can be exploited to enhance users’ search experience. According to this
vision, this dissertation aims at improving Web Search Engines toward the
mutual use of query logs and entities.

The contributions of this work are the following: we show how historical
usage data can be exploited for improving performance during the snippet
generation process. Secondly, we propose a query recommender system that,
by combining entities with queries, leads to significant improvements to the
quality of the suggestions. Furthermore, we develop a new technique for es-
timating the relatedness between two entities, i.e., their semantic similarity.
Finally, we show that entities may be useful for automatically building ex-
planatory statements that aim at helping the user to better understand if, and
why, the suggested item can be of her interest.
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Introduction

Web search engines (WSE) are about twenty years old. Despite this re-
cency, however, it is amazing how quickly they evolve. A WSE is probably
nowadays the most complex software ever conceived, implementing an Infor-
mation Retrieval system.

Baeza-Yates and Ribeiro-Neto define Information Retrieval [10] as the task
of representing, storing, organizing, and accessing information items. Given a
query expressing a user information need, as for a Database system, the task
of an Information Retrieval system is to retrieve information relevant to that
query. The key difference is that databases retrieve all items matching exactly
queries expressed in a formal language, while information retrieval systems
manage queries expressed in natural language, and try to do their best in
retrieving matching documents and ranking them by some subjective measure
of relevance. Queries in natural language are not easy to handle. For example
homonyms and polysemes – terms with the same or ambiguous meanings –
have to be dealt with.

A WSE is an IR system on a very large scale that store, organize and give
access to a particular kind of documents: Web documents. Unfortunately, the
documents that are hyperlinked and distributed over all the Internet, are very
noisy and heterogeneous for (quality of) content and formats. This makes very
hard the task of collecting and managing effectively them. Moreover, queries
submitted to WSEs are usually short – about two-terms on average – and the
subsumed information need often difficult to understand. The necessity of deal-
ing with these characteristics made WSEs just from their birth very different
from the information retrieval systems introduced in early 1960 for searching
the clean and homogeneous documents of digital libraries. The peculiarity of
the data managed, their size, and the novel interaction with the users asked for
deep changes to information retrieval foundations that were strongly contam-
inated by other disciplines such as natural language processing, data mining,
high performance computing, statistics, human computer interaction, complex
networks. In addition, several factors – Web 2.0, Web economy, geo-political
changes, advances in technology and popularity of smart mobile devices, etc
– caused the Web to grow at unprecedented rates in size, complexity, and
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number of users. In this extraordinary context, (i) quality of retrieved results,
and, (ii) time needed to process queries against huge indexes, two key issues
affecting even the first WSEs appeared in the ’90, have nowadays a paramount
importance.

This thesis deals with techniques to improve effectiveness and efficiency
of some WSE tasks by exploiting and combining two important sources of
knowledge:

Query Log Data: WSEs collect query log information about their use,
such as the queries submitted, the results clicked, the users’ sessions,
etc. Several studies proved that these logs constitute a gold mine that
can be analyzed and mined in order to significantly improve WSEs both
in terms of efficiency and efficacy [129];

Web of Data: The Web of Data is a recent approach, originated from the
Semantic Web [24], and consists in the collective effort to augment the
existing Web with semistructured-data, with the ultimate goal to enable
automatic intelligent reuse of the data by agents and search engines. In
order to reach this target, Web of Data promotes standards and instru-
ments that allow people to publish and retrieve enriched data.

Recently, the major search companies started to show a great interest for
the Web of Data: from Figure I.1 it can be seen that when a user performs
a query about an item (in the case depicted, the movie Tron), Google re-
turns together with the traditional list of ten blue links, a box containing
semi-structured information about the item. The semi-structured information
items available on the Web can describe any type of entity : a person, a prod-
uct, a location, a document, etc. Independently of the type of the entity,
they represent a very precious source of information to enhance Web search
effectiveness.

In our example, the content in the box is extracted from Wikipedia and
Freebase, one of largest knowledge bases composed by semistructured-data
manually inserted and preserved by volunteers (Freebase was acquired by
Google on July 16, 20101). In the top of the box movie ratings provided
by authoritative sources for movie reviews such as IMDb and Rotten Toma-
toes are also reported. It is worth noting that these sites as many others share
their semistructured-data with search engines by annotating their pages with
a semantic markup.

More and more structured and semi-structured data sources are becoming
available. With the current availability of data-publishing standards and tools,

1http://googleblog.blogspot.com/2010/07/deeper-understanding-with-metaweb.html

http://googleblog.blogspot.com/2010/07/deeper-understanding-with-metaweb.html
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Figure I.1: The result page for the query tron

adding structure and semantic to data published is becoming a mass activity.
Nowadays, the Web of Data is no longer limited to a few trained specialists, but
it attracts companies, governments and individuals. There are many prominent
fields in which semi-structured data publishing efforts became prevalent. Just
to make a few examples: the UK government shares open government data, in
the editorial world journals such as the New York Times or Reuters publish rich
metadata about their news articles, BestBuy publishes product descriptions in
a machine-readable format.

Progressively and inexorably, the prediction that Web search would be increas-
ingly semantic and graph-based is becoming true.

Contributions of the Thesis

In this thesis, we illustrate four new contributions in which we exploit Query
Log Data and the Web of Data for improving Web Search Engine quality and
performance.

Query Biased Snippets This Chapter, based on [44], presents a study
on how to improve performance during the result page construction, by dy-
namically generating document surrogates to be managed by a snippet caching
system. Our thesis is that the knowledge stored in query logs can help in build-
ing concise surrogates, that we call supersnippets. Our experiments show that
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supersnippets are very effective for efficient retrieval of high quality snippets.
Our technique exploits the fact that the set of queries for which a document
is retrieved is in most cases small, i.e., a large part of documents are retrieved
only for satisfying one user information need.

Semantic Query Recommendations This Chapter is based on [42, 43].
We investigate how to combine queries and entities in order to improve the user
experience on the WSE: we consider as a case study Europeana2, a portal that
aims to collect metadata about millions of books, paintings, films, museum ob-
jects and archival records that have been digitized by European institutions,
and make them searchable to users. We perform a deep analysis on the query
logs provided by Europeana and we propose a novel method to generate se-
mantic suggestions. Our recommender produces a list of entities (represented
by URIs) rather than returning to the user a list of possible query suggestions.
We show that providing such kind of recommendations has several benefits for
the user experience. We also propound a novel technique for evaluating the
relevance of semantic suggestions using the concept of relatedness [109, 110], a
graph-based technique to compute the semantic distance between two entities.

Learning Relatedness Measures for Entity Linking This Chapter is
based on [45]. Relatedness is an important measure, not only for evaluating
suggestions but also for recognizing the entities mentioned in raw text (web
queries, web pages, news, tweets . . . ); in a nutshell, the process of detecting
entities in a document consists of two tasks: spot the fragments of text that
may refer to an entity, and disambiguate the correct entity among several
possible candidates. The same mention may in fact refer to more than one
entity, e.g., the mention Tron could refer to the film, to an arcade game, and
even to Nicolò Tron, Doge of Venice. The semantic relatedness among the
entities mentioned in the textual context is obviously a important measure to
drive a correct disambiguation process. We propose a general approach based
on learning to rank techniques for improving the precision of the relatedness
function that significantly improves state-of-the-art solutions.

On Generating News Recommendation Explanations Finally, in Chap-
ter 5 based on [27], we focus on explaining the relations between the news read
online by the user and the ones recommended. News systems, in particular,
benefit from recommendations, given the fact that online news systems are
exploratory by nature. People browse through the list of daily news usually
driven by personal interest, curiosity, or both. Due to the amount of news

2www.europeana.eu

www.europeana.eu
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items available, online news services deploy recommender systems that help
the users to find potentially interesting news. In particular, we aim at enhanc-
ing the users’ experience on news platforms, like Google News, Yahoo! News,
by motivating the recommended news shown by means of a tool that auto-
matically generate brief, yet significant, explanations. We introduce different
ways of generating explanations for the recommended news, and we develop
a machine learning based method whose goal is to rank these explanations in
order to maximize the usefulness of the recommendation itself.

Outline

The thesis is organized as follows: Chapter 1 overviews the main topics
involved in this work: we briefly describe the architecture of a Web Search
Engine, we introduce Query Log Mining techniques, and we present the Web
of Data, focussing on Semantic Search, i.e., the information retrieval process
that exploits domain knowledge. In Chapter 2 we study how to improve per-
formance during the result page construction, by dynamically generating doc-
ument surrogates to be managed by a snippet caching system. In Chapter 3
we perform an analysis of the Europeana usage data and we extend a state-of-
the-art recommendation algorithm in order to take into account the semantic
information associated with submitted queries. Furthermore, we introduce a
new technique for evaluating (with low human effort) the relevance and the
diversication of the suggestions. In Chapter 4 we propose a learning to rank
approach for improving the precision of the relatedness function. In Chapter 5
we formulate the problem of how to generate and select news recommendation
explanations and we present and evaluate several techniques for solving the
problem. Finally, in Chapter 6 we present some conclusions and discuss future
work proposals.
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Chapter 1

Background

Web Search Engines (WSEs) are the primary way users access the contents
of the Web. By using a WSE, users are able to look for some information they
might need either for work or for leisure: news about the latest football match,
or about the last confidence vote of the Parliament. By querying a WSE users
obtain a ranked list of Web documents that are hopefully highly related with
their information needs. As above mentioned, WSEs can be considered part
of a broader class of software systems, namely Information Retrieval Systems.
However, the size, diffusion and complexity of the Web, WSEs need to cope
effectively with several challenges.

In a paper overviewing the challenges in modern WSE design, Baeza-Yates
et al. [8] state:

The main challenge is hence to design large-scale distributed sys-
tems that satisfy the user expectations, in which queries use re-
sources efficiently, thereby reducing the cost per query.

Therefore, the two key performance indicators in this kind of applications, in
order, are: (i) the quality of returned results (e.g. handle quality diversity and
fight spam), and (ii) the speed with which results are returned.

In this dissertation we discuss how query logs and the Web of Data may
improve the current state of the art in WSEs both for what concerns quality
and efficiency. Our work ranges over several topics in which we exploited
knowledge and techniques from the historical usage data recorded in query logs
and the Web of Data. This Chapter aims to provide a basic background for
the main topics related to the thesis. It is organized as follows: in Section 1.1
we sketch the architecture of a WSE. In Section 1.2 we resume the state of
the art in the analysis of the historical usage data. Finally In Section 1.3 we
introduce Web of Data and Semantic Search.
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1.1 Architecture of a Web Search Engine

A search engine is probably the most complicated software a company
may develop. Consisting of tens of interdependent modules, it represents a
big challenge in today’s computer engineering world. Many papers and books
sketch the architecture of web search engines. For example Barroso et al. [16]
present the architecture of Google as it was in 2003. Other search engines
are believed to have similar architectures. A Web search engine consists in
three major applications [34, 98]: crawling, indexing, and query processing.
Figure 1.1 shows the way the three applications interact and how the main
modules of a web search engine are connected.

computer engineering world.

Many papers and books sketch the architecture of web search engines. For example Barroso et
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proximity, load and capacity. The browser, then, sends a HTTP request to the selected data-center,

and thereafter, the query processing is entirely local to that center. After the query is answered by

the local data-center, the result is returned in the form of a HTML page, to the originating client.

Figure 1.1 shows they way the main modules of a web search engine are connected.
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Figure 1.1: The typical structure of a Web search engine. From [129].

Web search engines get their data from different sources: the Web, image
and video repositories (e.g. Flickr, or YouTube), social networks, etc. Crawling
is the process responsible for finding new or modified pages on the Web and
is made by several software agents called crawlers or spiders. In general, a
crawler starts from a list of URLs, called seeds ; then for each page, copies
the page into the repository. Furthermore, the crawler fetches all URLs in
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the page and adds them to the list of the URLs to visit, called the crawl
frontier. In particular, a crawler scours through hypertext pages searching
for new documents, and detecting stale, or updated content. Crawlers store
the data into a repository of content (also known as Web document cache),
and structure (the graph representing how Web pages are interconnected).
The latter being used, mainly, as a feature for computing static document
rank scores (e.g. PageRank [114], or HITS [86]). In modern Web search
engines, crawlers continuously run and download pages from the Web updating
incrementally the content of the document cache.

The textual (i.e., hyper-textual) content is indexed to allow fast retrieval
operations (i.e., query requests). The index (built by the Indexer) usually
comprises of several different archives storing different facets of the index. The
format of each archive is designed for enabling a fast retrieval of information
needed to resolve queries. Indexes to support such text-based retrieval can be
implemented using any of the access methods traditionally used to search over
classical text document collections. Examples include suffix arrays, inverted
indexes or inverted files, and signature files. In Web domain, inverted indexes
are the index structure used. An inverted index is made by a dictionary D of
terms. In the following, let D be the data structure, and V = {t1, t2, · · · , tm}
the vocabulary i.e., the set of m terms of the whole document collection. For
each term, we have a list that records in which documents the term occurs.
This list is called posting list and its elements (postings) contain the IDs of
the documents containing the term (and often the position of the match in the
document).

Usually in real systems the design is tailored to distribute requests through
query servers to avoid peaking server response time [16]. In real-world search
engines, the index is distributed among a set of query servers coordinated by a
broker. Figure 1.2 shows the interactions taking place among query servers and
the broker. The broker, accepts a query an user and distributes it to the set of
query servers. The index servers retrieve relevant documents, compute scores,
rank results and return them back to the broker which renders the result page
and sends it to the user. The broker is usually the place where the activities
of users (queries, clicked results, etc.) are stored in files called query logs. A
module dedicated to analyze past queries is also usually available within the
architecture components.

Searching is the goal of a Web search engine. When a user enters a query,
the user’s browser builds a URL (for example http://www.google.com/search?

q=diego+ceccarelli). The browser, then, looks up on a DNS directory for
mapping the URL main site address (i.e., www.google.com) into a particular
IP address corresponding to a particular data-center hosting a replica of the
entire search system. The mapping strategy is done accordingly to differ-

http://www.google.com/search?q=diego+ceccarelli
http://www.google.com/search?q=diego+ceccarelli
www.google.com
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8 Introduction

Fig. 1.3 The typical structure of a distributed web search engine.

retrieve relevant documents, compute scores, rank results and return

them back to the broker which renders the result page and sends it to

the user. Figure 1.3 shows the interactions taking place among query

servers and the broker.

The broker is usually the place where queries are grabbed and stored

in the query logs. A module dedicated to analyze past queries is also

usually available within the architecture components.

1.2.1 The Index

An Inverted File index on a collection of web pages consists of several

interlinked components. The principal ones are the lexicon, i.e.,

the list of all the index terms appearing in the collection, and the

corresponding set of inverted lists, where each list is associated with

a distinct term of the lexicon. Each inverted list contains, in turn, a

set of postings. Each posting collects information about the occurrences

of the corresponding term in the collection’s documents. For the sake

of simplicity, in the following discussion we consider that each posting

Figure 1.2: The typical structure of a distributed web search engine.
From [129].

ent objectives such as: availability, geographical proximity, load and capacity.
The browser, then, sends an HTTP request to the selected data-center, and
thereafter, the query processing is entirely local to that center. The typical
interaction between a user and a WSE thus starts with the formulation of a
query q, representing the user’s information need. Note that the information
need is different from the query: the first is the topic about which the user
desires to know more, while the second is what the user conveys to the com-
puter in an attempt to communicate the information need. A query consists
of a list of r terms

q = t1, t2, . . . , tr

Once the user has submitted her query q, document indexes are accessed to
retrieve a single, uncategorized list with the most k relevant items appearing
first

search(q) = {d1, d2, · · · , dk}
where k usually is ten.

Sorting documents by relevance requires computing for each document a
relevance score with respect to the query. Formally, each relevance of each
document di is evaluated through a scoring function

score(q, di) = si si ∈ R+ ∪ {0}

that returns a score si. The highest is the score, the highest is the relevance
of the document di for the query q.
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There are several methods for computing scoring function. A popular scor-
ing function is Okapi BM25 [123], based on a bag of words model : the rank of
a document is given by the query terms appearing into it, without taking into
consideration the relationships between the query terms within the documents.

After documents are sorted by relevance, the top-k results are returned in
the form of an HTML page to the user.

1.2 Query Log Mining

The uncertainty in users’ intent is a key problem in Web search engines
and, differently from smaller scale IR systems, Web IR systems can rely on
the availability of a huge amount of usage information contained within past
queries to solve it. Previously submitted queries represent, in fact, a very im-
portant mean for enhancing effectiveness and efficiency of Web search systems.

Query log mining is concerned with all the techniques aiming at discovering
interesting patterns from query logs of Web search engines with the purpose
of enhancing an online service provided through the Web. It can be seen as a
branch of the more general Web Analytics [73] scientific discipline. According
to the Web Analytics Association [6]:

“Web Analytics is the measurement, collection, analysis and reporting of In-
ternet data for the purposes of understanding and optimizing Web usage”.

Also, it can be considered a special type of Web usage mining [136]. Web
usage mining, in fact, refers to the discovery of user access patterns from Web
usage logs. Furthermore, query log mining is not only concerned with the
search service (from which queries usually come from) but also with more gen-
eral services like, for instance, search-based advertisement, or web marketing
in general [74].

Query logs keep track of information regarding interaction between users
and the search engine. They record the queries issued to a search engine and
also a lot of additional information such as the user submitting the query,
the pages viewed and clicked in the result set, the ranking of each result, the
exact time at which a particular action was done, etc. In general, a query
log is comprised by a large number of records 〈qi, ui, ti, Vi, Ci〉 where for each
submitted query qi, the following information is recorded: i) the anonymized
identifier of the user ui, ii) the timestamp ti, iii) the set Vi of documents
returned by the WSE, and iv) the set Ci of documents clicked by ui.

From query log information it is possible to derive Search Sessions, sets of
user actions recorded in a limited period of time. The concept can be further
refined into: i) Physical Sessions, ii) Logical Sessions, and iii) Supersessions.
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Physical Sessions: a physical session is defined as the sequence of queries
issued by the same user before a predefined period of inactivity. A typical
timeout threshold used in web log analysis is t0 = 30 minutes. [118, 140].

Logical Sessions: a logical session [12] or chain [120] is a topically coherent
sequence of queries. A logical session is not strictly related to timeout con-
straints but collects all the queries that are motivated by the same informa-
tion need (i.e., planning an holiday in a foreign country, gathering information
about a car to buy and so on). A physical session can contain one or more
logical session. Jones et al. [82] introduced the concepts of mission and goal
to consider coherent information needs at different level of granularity, being
a goal a sub-task of a mission (i.e., booking the flight is one of the goal in the
more general mission of organizing an holiday).

Supersessions: we refer to the sequence of all queries of a user in the query
log, ordered by timestamp, as a supersession. Thus, a supersession is a con-
catenation of sessions.

Sessions are, thus, sequences of queries submitted by the same user in the
same period of time. This data can be used to devise typical query patterns,
used to enable advanced query processing techniques. Click-through data (rep-
resenting a sort of implicit relevance feedback information) is another piece of
information that is generally mined by search engines. In particular, every sin-
gle kind of user action (also, for instance, the action of not clicking on a query
result) can be exploited to derive aggregate statistics which are very useful
for the optimization of search engine effectiveness. How query logs interact
with search engines has been studied in many papers. Good starting point
references are [129, 7, 124].

1.2.1 A Characterization of Web Search Engine Queries

The characteristics of query logs coming from some of the most popular
Web search engines have been deeply studied [18, 19, 75, 76, 77, 78, 88, 100,
112, 113, 116, 132, 133, 158]. Typical statistics that can be drawn from query
logs are: query popularity, term popularity, average query length, distance
between repetitions of queries or terms.

The first contribution in analyzing query logs comes from Silverstein et
al. [128]. Authors propose an exhaustive analysis by examining a large query
log of the AltaVista search engine containing about a billion queries submitted
in a period of 42 days. The study shows some interesting results including the
analysis of the query sessions for each user, and the correlation among the
terms of the queries. Similarly to other works, authors show that the majority
of the users (in this case about 85%) visit the first page of results only. They
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also show that 77% of the users’ sessions end up just after the first query.
The query log analyzed contains a huge number of queries and account to
285 million users. Furthermore, the results shown in the paper are considered
precise and general due to the high number of queries and users analyzed.

Lempel and Moran [93], and Fagni et al. [56] study the content of a publicly
available AltaVista log. The log consist of 7,175,648 queries issued to AltaVista
during the summer of 2001. No information referring the number of users
logged is released. This second AltaVista log covers a time period almost
three years after the first studies presented by Jansen et al. and Silverstein et
al. Furthermore, the log is smaller than the first one. Indeed it represents a
good picture of search engine users.

The distribution of query popularity [99], and term popularity have been
shown to follow a power-law. This means that the number of occurrences y of
a query or a term is proportional to x−α, where x is the popularity rank, and
α is a real parameter measuring how popularity decreases against the rank.
In a formula, y = Kx−α, where K is a real positive constant corresponding to
the query with the highest popularity. Power-law distributions have the form
of a straight line when plotted on a log-log scale.

Many different topics can be found in query logs. A very first result in
categorizing queries is [132]. Authors show the percentage of queries submitted
for each topic to the Excite search engine in 1997. Categorizing queries into
topics is not a trivial task. Recent papers showing techniques for assigning
labels to each query [63, 126, 153, 20, 21, 38] adopts a set of multiple classifiers
subsequently refining the classification phase.

Terms are distributed according to a power-law as well (in particular a
double-pareto log-normal distribution). In fact, the curve of term distribution
fall sharply denoting that the most frequent terms are much more frequent that
the rest of the terms. Figure 1.3 shows log-log plots of the term popularity
distribution in the case of two query logs: Excite [99], and AltaVista [93].

An interesting statistics obtained from query logs is how terms co-occur.
In [135], a follow-up of the work presented in [77], Spink et al. present the
first fifty most frequently co-occurrent terms. Figure 1.1 shows how terms
co-occur in queries without reflecting topic popularity. The majority of term
pairs concern non-XXX topics while in the same analysis they found that XXX
queries are highly represented. This highlight that, for some topics, people use
more terms to search for precise information, while for other topics the same
user need can be satisfied by short queries.



28 CHAPTER 1. BACKGROUND

24 The Nature of Queries
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Fig. 2.5 Plots displaying the number of requests for terms in various query logs. (a) Excite;

(b) Altavista and (c) Yahoo! (from [15]).
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Figure 1.3: Terms popularity of a) the first 1,000 queries in the Excite [99],
and b) AltaVista [93] logs.
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Table 2.2. List of the fifty most co-occurring terms in the Excite log (term1 — term2 frequency) [212].

and-and 6,116 of-and 690 or-or 501 women-nude 382 sex-pics 295

of-the 1,901 pictures-of 637 sex-pictures 496 pics-nude 380 north-carolina 295

pics-free 1,098 how-to 627 nude-pictures 486 of-department 365 free-teen 293

university-of 1.018 and-the 614 for-sale 467 united-states 361 free-porn 290

new-york 903 free-pictures 637 and-not 456 of-history 332 and-nude 289

sex-free 886 high-school 571 and-sex 449 adult-free 331 and-pictures 286

the-in 809 xxx-free 569 the-to 446 of-in 327 for-the 284

real-estate 787 and-free 545 the-the 419 university-state 324 new-jersey 280

home-page 752 adult-sex 508 princess-diana 410 sex-nudes 312 of-free 273

free-nude 720 and-or 505 the-on 406 a-to 304 chat-rooms 267

Table 1.1: List of the fifty most co-occurring terms (term1–term2, frequency)
in the Excite log [135].
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1.2.2 Search Sessions

After a first characterization of Web search engines’ queries, here we focus
on studying how users interact with search engine systems. What happen when
a user has submitted a query and results are shown? How can be decided if a
query has been correctly answered or if a user is satisfied by the search results?
How people change queries if those have not produced satisfying users? The
answers to these questions are very important in order to enhance the Web
search engine performances.

In one of the first paper devoted to discovery user intent behind queries [36]
Andrei Broder studies the goal a user wants to reach when submitting a query
to a search engine. In the Broder’s taxonomy a query can be either a Naviga-
tional query – were the immediate intent is to reach a particular destination
(e.g. Yahoo.com, America Airlines home page, Don Knuth’s home page); an
Informational query – where the intent is to acquire some information assumed
to be present on one or more web pages (e.g. San Francisco or normocytic ane-
mia); a Transactional query – where the immediate intent is to perform some
Web-mediated activity (e.g. online music, or online flower delivery service).

In order to evaluate the quality of search results it is interesting to look
at how users interact with the search engine. For instance, it is interesting to
extract and analyze user search sessions from query logs, and to derive implicit
measures of quality explicitly tailored on search engine users.

Queries themselves are not always enough to determine the user intent.
Furthermore, one of the key objectives of a search engine is to evaluate the
quality of their results. Implicit measures that are available to log analysts
are: the click-through rate – the number of clicks a query attract, time-on-
page – the time spent on the result page, and scrolling behavior – how users
interact with the page in terms of scrolling up and down; are all performance
indicators search engines can use to evaluate their quality. How are the data
recorded? Toolbars and user profiles surveyed directly from users are the main
mean through which search engine companies record usage data diverse from
those obtained by query logs.

A series of queries can be part of a single information seeking activity.
Efforts have been spent on understanding the effects of request chains on the
search engine side. The main goals of this analysis are to show how users
interact with the search engine, and how they modify queries depending on
what they obtain (in terms of results) from the search engine. Last but not
least, efforts have been spent on understanding how users use multitasking and
task switching on search sessions.

A first interesting result to highlight is how users interact with the search
engine from a page request point of view. Many studies point out that users
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rarely visit result pages beyond the first one. Spink et al.analyze the Excite
query log showing that about 78% of users do not go beyond the first page of
results. Similar analysis on different query logs show the same behaviors [93,
56].

In order to obtain the results they need, users often try to reformulate
queries (refine or modify) during their search sessions. Lau and Horvitz [91]
study this behavior by categorizing queries. They propose seven categories:

New: A query for a topic not previously searched for by this user within the
scope of the dataset (twenty-four hours);

Generalization: A query on the same topic as the previous one, but seeking
more general information than the previous one;

Specialization: A query on the same topic as the previous one, but seeking
more specific information than the previous one;

Reformulation: A query on the same topic that can be viewed as neither
a generalization nor a specialization, but a reformulation of the prior
query;

Interruption: A query on a topic searched on earlier by a user that has been
interrupted by a search on another topic;

Request for additional results: A request for another set of results on the
same query from the search service;

Blank queries: Log entries containing no query.

Authors apply the proposed categorization scheme within the Excite query
log. Figure 1.4 shows the results obtained. In the majority of the cases most
actions are either new queries or requests for additional informations. Further-
more, a large percentage of users (about 30%) issue a modification, (refinement,
specification, or a reformulation) of a previously submitted query.

Many other works deal with the identification of users’ search sessions
boundaries. Work on session identification can be classified into: i) time-
based, ii) content-based, and iii) mixed-heuristics, which usually combine both
i) and ii). Time-based techniques have been extensively proposed for detecting
meaningful search sessions due to their simplicity and ease of implementation.
Indeed, these approaches are based on the assumption that time between ad-
jacent issued queries is the predominant factor for determining a topic shift in
user search activities. Roughly, if the time gap between two issued queries is
lower than a certain threshold then they are also likely to be related.
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• Interruption: A query on a topic searched on earlier by a user

that has been interrupted by a search on another topic.
• Request for additional results: A request for another set of

results on the same query from the search service.
• Blank queries: Log entries containing no query.

Figure 3.3 shows how queries are categorized within the Excite

query log. As it is evident, in the majority of the cases most actions

were either new queries or requests for additional information. Even

though, a large percentage of users (around 30%) were issuing a mod-

ification (either a refinement, or a specification, or a reformulation) of

a previously submitted query.

Previous results can be seen as a quantitative analysis of how users

interact with the search system. A different point of view is represented

by the analysis of Multitasking and Task Switching in query sessions.

Multitasking sessions are those of users seeking information on multiple

topics at the same time. Studies recently presented show that users have

an inclination to carry on multi-tasking queries. For instance, Ozmutlu

Fig. 3.3 Breakdown of the 4,960 queries analyzed in [127] into the different query modifi-

cation categories defined.Figure 1.4: Summary of the categorization of 4,960 queries analyzed in [91].

Jansen and Spink [76] make a comparison of nine Web search engines trans-
action logs from the perspectives of session length, query length, query com-
plexity, and content viewed. Here, they provide another definition of session,
i.e. search episode, describing it as the period of time occurring from the first
to the last recorded timestamp on the WSE server from a particular user in a
single day, so that session length might vary from less than a minute to a few
hours. Moreover, using the same concept of search episode, Spink et al. [134]
investigate also multitasking behaviors while users interacting with a WSE.
Multitasking during Web searches involves the seek-and-switch process among
several topics within a single user session. Again, a user session is defined
to be the entire series of queries submitted by a user during one interaction
with the WSE, so that session length might vary from less than a minute
to a few hours. The results of this analysis performed on a AltaVista query
log show that multitasking is a growing element in Web searching. Finally,
Richardson [121] shows the value of long-term WSE query logs with respect to
short-term, i.e., within-session, query information. He claims that long-term
query logs can be used to better understand the world where we live, showing
that query effects are long-lasting. Basically, in his work Richardson does not
look at term co-occurrences just within a search session that he agrees to be a
30 minutes time-window, but rather across entire query histories.

Boldi et al. [29] introduce the Query Flow Graph as a model for representing
data collected in WSE query logs. They exploited this model for segmenting
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the query stream into sets of related information-seeking queries, leveraging
on an instance of the Asymmetric Traveling Salesman Problem (ATSP).

Jones and Klinkner [82] argue that within a user’s query stream it is possible
to recognize particular hierarchical units, i.e., search missions, which are in
turn subdivided into disjoint search goals. A search goal is defined as an atomic
information need, resulting in one or more queries, while a search mission is
a set of topically-related information needs, resulting in one or more goals.
Given a manually generated ground-truth, Jones and Klinkner [82] investigate
how to learn a suitable binary classifier, which is aimed to precisely detect
whether two queries belong to the same task or not. Among various results,
they realize that timeouts, whatever their lengths, are of limited utility in
predicting whether two queries belong to the same goal, and thus to identify
session boundaries. Indeed, authors do not explore how such binary classifier
could be exploited for actually segmenting users’ query streams into goals and
missions.

Lucchese et al. [95] devise effective techniques for identifying task-based
sessions, i.e. sets of possibly non contiguous queries issued by the user of a
Web search engine for carrying out a given task. In order to evaluate and
compare different approaches the authors built, by means of a manual label-
ing process, a ground-truth where the queries of a given query log have been
grouped in tasks. The analysis of this ground-truth shows that users tend to
perform more than one task at the same time, since about 75% of the sub-
mitted queries involve a multi-tasking activity. Furthermore, authors formally
define the Task-based Session Discovery Problem (TSDP) as the problem of
best approximating the manually annotated tasks, and propose several vari-
ants of well-known clustering algorithms, as well as a novel efficient heuristic
algorithm, specifically tuned for solving the TSDP. These algorithms also ex-
ploit the collaborative knowledge collected by Wiktionary and Wikipedia for
detecting query pairs that are not similar from a lexical content point of view,
but actually semantically related. The proposed algorithms is evaluated on the
above ground-truth. Results show that it perform better than state-of-the-art
approaches, because it effectively take into account the multi-tasking behavior
of users.

1.3 The Web of Data

The traditional Web is usually modeled as a hyperlinked collection of doc-
uments. Each document is uniquely identified by a string of characters called
Uniform Resource Identifier (URI). We can consider a document as an
artifact produced by a human to share knowledge with other humans. The
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Web of Data consists in replacing documents with data, in order to allow ma-
chines to consume them. The most important property of the Web of Data is
that it is naturally organized around entities, and that each of these entities
is uniquely identified by a URI.

Switching from documents to data is not trivial, and it implies a lot of
challenges. Nevertheless, it deserves the effort. In the last years, the infor-
mation and the services provided by means of the Web grew up rapidly. At
the end of the last century, Internet became popular and many businesses
started over it; the Web changed and became the Web 2.0 [53]. In 2005 Tim
O’Really [111] stated that data is the next Intel Inside. In 2006, Szalay and
Gray [138] called the Web an exponential world showing that the size of scien-
tific data was doubling every year. The same phenomenon was also called Data
Deluge [22]. Nowadays, many people publish their data on the web. Many sci-
entific laboratories share the data collected from their instruments (sensors,
telescopes, application logs, etc), while most popular social networks collect
daily unprecedented amounts of user-generated data. All the data exposed by
these stakeholders have a kind of structure that often is not strictly defined
as in databases. For this reason they are usually referred as semi-structured
data [1].

The ability to manage and analyze all these data becomes every day so
important that the concept of data science1 was created.

1.3.1 Semantic Search

Web of Data originates from the Semantic Web which was conceived as an
extension of the Web. The goal of Semantic Web [24] is to add semantics to the
documents on the Web in order to simplify the interaction between humans and
computers. The focus of the Semantic Web is defining several common formats
for encoding the data, in order to be able to easily combine and integrate
data provided by different sources. The World Wide Web Consortium (W3C)
defines2 the Semantic Web as:

A common framework that allows data to be shared and reused across appli-
cation, enterprise, and community boundaries. It is a collaborative effort led
by W3C with participation from a large number of researchers and industrial
partners. It is based on the Resource Description Framework (RDF).

One of the main issue is the management of the documents and in partic-
ular on how to semantically support the document retrieval, i.e., the semantic
search. In the following, we focus on the traditional search, where the users do
not have particular skill in any query language, so the retrieval system needs

1http://jobs.aol.com/articles/2011/08/10/data-scientist-the-hottest-job-you-havent-heard-of/
2http://www.w3.org/2001/sw/

http://jobs.aol.com/articles/2011/08/10/data-scientist-the-hottest-job-you-havent-heard-of/
http://www.w3.org/2001/sw/
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to adopt simple interfaces and easy accessibility. These systems usually rely
on keyword search or natural language interfaces. Despite these interfaces are
easy for the users, keywords inserted by the users may be ambiguous. A clas-
sical example is a user searching for the term apple: what is the user looking
for? The Apple Inc. company or the fruit? Understanding the meaning (query
intent) of the query is then important and would improve the precision of
search engines.

Mangold [97] defines semantic search as an information retrieval process
that exploits domain knowledge. The topic is really broad, and several research
communities proposed approaches for improving search by using semantic con-
cepts. Many works have been proposed in Information Retrieval, Machine
Learning, Semantic Web and Natural Language Processing communities, each
one presenting the problems from its perspective and with its terminology. In
particular the approaches differ by i) how the data is modeled ii) which data
resources are used iii) how the users express their information need iv) how
queries are matched against the collection and v) how results are ranked. It
is worth to observe that Semantic Search is a broad topic and it would not be
possible to review all the works in the area, so in the following we will only
present works that are relevant for this dissertation, in particular we will not
cover literature related to matching and ranking.

1.3.2 Modeling the Web of Data

Semi-structured data can be represented by using different models, that
here we briefly resume:

OEM: Object Exchange Model: in this model, objects could be either
atomic or complex. An atomic object is like a primitive type such as an
integer or a string. A complex object is a set of (attribute, object) pairs;

XML: Extensible Markup Language: XML is very similar to HTML.
It has tags, which identify elements. Tags can also contain attributes
about elements. Attributes may be represented by new tags or may be
atomic data such as text. The XML standard puts no restrictions on
tags, attribute names or nesting relationships for data objects, making
it well suited for describing semi-structured data;

JSON: JavaScript Object Notation “The Fat-Free Alternative to XML”3

is a lightweight data-interchange format, with the goal of being easy for
humans to read and write and easy for machines to parse and generate.

3http://www.json.org/fatfree.html

http://www.json.org/fatfree.html
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It has become popular to code data at Web scale because of its flexibility
and minimality. It resembles the OEM model;

RDF: Resource Description Framework [87]: a resource description is
composed of a statements about the resource. A statement is a triple
simply consisting in a subject, a predicate, and an object. For example,
one way to represent the notion “Picasso was born in Málaga” in RDF
is by means of a triple having “Picasso” as subject, the predicate “was
born in”, and an object denoting “Málaga”. Note that a set of RDF
statements forms a direct labelled graph. Moreover, in this model objects
are described by URIs that denote, and can be used to access, actual data
on the World Wide Web.

1.3.3 Data Resources

Data resources are many and it is hard to provide a full list of the projects
related to their creation. In the following we highlight the most important
datasets publicly available. A comprehensive and well-organized list can be
find in the work of Weikum and Theobald [155].

The most popular resource is Wikipedia4, the largest encyclopedia ever
conceived. Each page of Wikipedia can be considered a textual description
of an entity; moreover Wikipedia pages may expose semi-structured informa-
tion about entities: in the infobox tables (the pull-out panels appearing in the
top-right of the default view of many Wikipedia articles, or at the start of the
page for the mobile version); in the information about the categories which an
entity belongs to; in images, geo-coordinates for places, and in the reference
to external web links (e.g., official home pages). The project DBpedia [5], ini-
tially developed by the Free University of Berlin and the University of Leipzig,
aims at providing all the data contained in Wikipedia in a semi-structured for-
mat, i.e., RDF. The English version of the DBpedia knowledge base currently
describes 3.77 million entities.

DBpedia is part of the Linked Data [23] project, which aims at providing a
“best practice for exposing, sharing, and connecting pieces of data, information,
and knowledge on the Semantic Web using URIs and RDF ”. The project col-
lects datasets available under open licenses, publishes them in RDF, and gen-
erates relations (interlinks) among them [26]. At the time of writing, Linked
Data contains about 260 heterogeneous datasets and 50 billions link relations
within them; Figure 1.5 shows a graphical representation of the datasets.

Another important collaborative project is Freebase, a large knowledge base
where semi-structured data is collected and maintained by the members of a

4http://en.wikipedia.org

http://en.wikipedia.org 
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large community. Freebase (available under a Creative Commons Attribution
License) contains approximatively 22 million entities and it is used by Google
for enriching Web search result pages. The Wikipedia Foundation has a similar
project called Wikidata.

YAGO [137] is a rich knowledge base, which contains around 10 million
entities and 120 million facts about these entities. YAGO aggregates data
coming from Wikipedia, (e.g., categories, redirects, infoboxes), WordNet (e.g.,
synsets. hyponymy) and GeoNames.

Finally, WordNet [108] is a lexical database for the English language. Word-
Net groups words with the same meaning into special sets called synsets. Fur-
thermore WordNet provides the polysemy count of any word, and a frequency
score that helps to identify the most common synset for a word. WordNet
provides also the lexical relations among the synsets. For example it specifies
if two synsets are antonyms (opposite of each other). The latest version of
WordNet, released on December 2006) contains 155, 287 words organized in
117, 659 synsets for a total of 206, 941 word-sense pairs.

The largest dataset is however composed by the subset of Web documents
on embedding metadata in RDF, RDFa, Microformats, or other formats. Usu-
ally, these data specify additional information about the document to which
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they refer, such as the author or the publication date; they can also con-
tain metadata at the entity-level. For example, Rotten Tomatoes5 exposes
rich annotations about movies and actors. In 2011, we introduced a Dataset
for Entity-Oriented Search [40]: the dataset6 was built from a fresh crawl
of the Web performed by Sindice [145]. The crawl covers various domains:
e-commerce, social networks, social communications, events, scientific publi-
cations, and more, and the data retrieved reflects these topics. Part of he data
is coming from Linked Data datasets, such as DBpedia or Geonames. It is
worth to note that the number of pages annotated on the Web is increasing:
in 2012 Mika and Potter analyzed a large web crawl of Bing and found that
about 30% of the pages in the crawl contain microformats [107].

Content providers add metadata to improve the quality of their pages, so
that WSEs rank them higher. In order to promote this behavior and to improve
the quality of published data, in 2011 the largest search companies (Yahoo!,
Google, Bing and Yandex) promoted schema.org, a collection of schemas for
modeling common entities such as people, organizations, places and so on.
Similarly Facebook proposed the Open Graph schema in order to turn content
into a social object and enable its multi-point connectivity to the social graph
of the Facebook universe.

1.3.4 From raw to semi-structured data

The largest part of Web documents currently does not contain semantic
annotations, and they are commonly modeled as a simple bag of words. One
of the main approaches for enhancing search effectiveness on these documents
consists in automatically enriching them with the most relevant related entities
[115]. By enriching in the same way the queries submitted by users, query
processing can exploit the semantic relations among the entities involved.

In literature, this automatic enrichment is known as the Entity Linking:
given a plain text, the entity linking task aims to identify all the small frag-
ments of text (in the following interchangeably called spots or mentions) re-
ferring to any named entity that is listed in a given knowledge base, e.g.,
Wikipedia. The ambiguity of natural language mentions makes it a non trivial
task. The same entity can be in fact mentioned with different text fragments,
e.g., “President Obama”, “Barack Obama”. On the other hand, the same
mention may refer to different entities, e.g., “President” may refer to the U.S.
president or to Alain Chesnais, the president of the Association for Computing
Machinery.

5see http://www.rottentomatoes.com/m/tron/
6available at http://data.sindice.com/trec2011/

http://www.rottentomatoes.com/m/tron/
http://data.sindice.com/trec2011/
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A typical entity linking system performs this task in two steps: spotting
and disambiguation. The spotting process identifies a set of candidate spots in
the input document, and produces a list of candidate entities for each spot.
Then, the disambiguation process selects the most relevant spots and the most
likely entities among the candidates. The spotting step exploits a given catalog
of entities, or some knowledge base, to devise the possible mentions of entities
occurring in the input. One common approach to address this issue is resorting
to Wikipedia [110, 89]: each Wikipedia article can be in fact considered a
named entity, and the anchor texts associated with Wikipedia links a rich
source of possible mentions to the linked entity. The spotter can thus process
the input text looking for any fragment of text matching any of the Wikipedia
mentions, and therefore potentially referring to a entity. Indeed, the spotter
should detect all the mentions and find all the possible entities associated with
such mentions. The coverage of the source knowledge base and the accuracy
of the spotter have in fact a strong impact on the recall of the entity linking
system: all the entities related to every mention should be possibly detected
and returned [47].

In NLP Research, Named Entity Recognition (NER) is a similar problem
extensively studied in the state of the art. The main difference with Entity
Linking is the fact that entities discovered in NER are represented as labeled
phrases and are not uniquely identified by referring them to a knowledge base.
Bunescu and Pasca [39] propose to link spots to Wikipedia articles (entities):
in their work they exploit Wikipedia categories associated to each article to
perform disambiguation. A similar approach is proposed by Cucerzan [50],
whose approach creates for each article a vector containing the closest enti-
ties and categories. Section 4.3 provides a more detailed description of these
approaches [110, 66, 68, 105, 57].

Beside entity linking for documents, an even more challenging issue is entity
linking for queries. Annotating keyword queries with entities is difficult mainly
for two reasons: i) query terms can have multiple meanings (polisemy), or du-
ally, the same information need can be represented by using different words
(synonymy) ii) while in the case of documents one can exploit the text close to
the spot in order to perform disambiguation, a keyword query usually does not
have an exploitable context. Several approaches to perform query-entity link-
ing have been proposed. Huurnink et al. [72] exploit clicks to map queries to
an in-house thesaurus. Other proposals [70, 106] perform approximate match-
ing between the query and the label of the entity. Meij et al. [102] match the
query and its n-grams against the entity labels and use machine learning to
select the most related entities. Furthermore, in [103] they propose a method
still based on machine learning that performs the mapping between the queries
and DBpedia entities. Interestingly, they consider in their features set the user
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history which is important because it provides a context for disambiguation
(we also rely on that feature in the approach presented in Section 3.6.1). En-
tity Retrieval (ER) is a well known problem, strongly related to entity linking:
the task consists in ranking the entities in a knowledge base given a keyword
query. Many approaches for ER were proposed and evaluated in several tracks
proposed at the TREC [14] and at the INEX [52] conferences. In these tracks
there are different problems about ranking entities (e.g., rank only entities of
a certain type, rank entities that best represent a query, etc.). The research
on ER is really extensive [83, 147, 148, 151, 161]. For a complete survey of the
methods we remind to Adafre et al. [2]. An interesting approach was proposed
by Zwol et al. [148]. In their work they propose to rank facets (i.e., related
entities) by learning a model through Gradient Boosted Decision Trees [58],
and they evaluate the quality of their model by considering two different clicks
models: i) click through rate, and, ii) click over expected clicks.
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Chapter 2

Query Biased Snippets

2.1 Introduction

Nowadays a Web Search Engine (WSE) is a very complex software sys-
tem [8]. It is well known that the goal of a WSE is to answer users’ queries
both effectively, with relevant results, and efficiently, in a very short time
frame. After a user issues a query, the WSE actually runs a chain of complex
processing phases producing the Search Engine Results Page (SERP). A SERP
contains a list of few (usually 10) results. Each result corresponds to a Web
page, and it contains the title of the page, its URL, and a text snippet, i.e. a
brief text summarizing the content of the page.

The true goal is to scale-up with the growth of Web documents and users.
The services offered by a WSE exploit a significant amount of storage and
computing resources. Resource demand must be however kept as small as
possible in order to achieve scalability. During query processing, document
indexes are accessed to retrieve the list of identifiers of the most relevant doc-
uments to the query. Second, a view of each document in the list is rendered.
Given a document identifier, the WSE accesses the document repository that
stores permanently on disk the content of the corresponding Web page, from
which a summary, i.e. the snippet, is extracted. In fact, the snippet is usually
query-dependent, and shows a few fragments of the Web page that are most
relevant to the issued query. The snippets, page URLs, and page titles are
finally returned to the user.

Snippets are fundamental for the users to estimate the relevance of the
returned results: high quality snippets greatly help users in selecting and ac-
cessing the most interesting Web pages. It is also known that the snippet
quality depends on the ability of producing a query-biased summary of each
document [143] that tries to capture the most important passages related with
the user query. Since most user queries cannot be forecasted in advance, these
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snippets cannot be produced off-line, and their on-line construction is a heavy
load for modern WSEs, which have to process hundreds of millions queries
per day. In particular, the cost of accessing several different files (containing
the Web pages) for each query, retrieved among terabytes of data, under heavy
and unpredictable load conditions, may be beyond the capability of traditional
filesystems and may require special purpose filesystems [146].

In this Chapter we are interested in studying the performance aspects of
the snippet extraction phase and we devise techniques that can increase the
query processing throughput and reduce the average query response time by
speeding-up snippet extraction phase. In particular, we leverage on a pop-
ular technique used to enhance performance of computing systems, namely
caching [117]. Caching techniques are already largely exploited by WSEs at
various system levels to improve query processing, mainly for storing past
queries and associated sets of results along with the query-biased snippets [55].

The basic technique adopted for Web search caching is to store the whole
result page for each cached query. When a cache hit occurs, the result page is
immediately sent back to the user. This approach perfectly fits queries being
in the “head” of the power-law characterizing the query topic distribution. On
the other hand, SERP caching is likely to fail in presence of personalization,
that is when the engine produces two different SERPs for the same query
submitted by two different users. Furthermore, it fails when a query has not
been previously seen or it is a singleton query, i.e. it will not be submitted
again in the future. Baeza-Yates et al. [9] report that approximatively 50% of
the queries received by a commercial WSE are singleton queries.

Unlike query-results caching, snippets caching that is the focus of this
Chapter, has received relatively low attention. The two research efforts closest
to ours are those by Turpin et al. and Tsegay et al. [146, 144]. The authors
investigate the effect of lossless and lossy compression techniques to gener-
ate documents surrogates that are statically cached in memory. They argue
that complex compression algorithms can effectively shrink large collection of
texts and accommodate more surrogates within the cache. As a trade-off,
complex decompression increases the time needed by the cache to serve a hit,
and are thus unlikely to decrease the average snippets generation time [146].
Lossy compression techniques produce surrogates by reordering and pruning
sentences from the original documents. They reduce the size of the cached doc-
uments, still retaining the ability of producing high quality snippets. Tsegay
et al. measured that in the 80% of the cases snippets generated from surro-
gates that are the 50% of the original collection size, are identical to the ones
generated from the non-compressed documents [144].

To the best of our knowledge, this is the first research studying techniques
for dynamically generating document surrogates to be managed by a snippet
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caching system. Furthermore, the surrogates generation method is completely
new, since the sentence selection is based on the past queries submitted to
the WSE. Our thesis is that the knowledge stored in query logs can help in
building concise surrogates, that we call supersnippets, which we prove to be
very effective for the efficient retrieval of high quality snippets.

The rest of this Chapter is organized as follows. In Section 2.2 and in Sec-
tion 2.3 we provide an overview on text summarization techniques and on WSE
caching techniques. In Section 2.4, by analyzing a query log, we show that the
snippet generation process has a significant locality, which supports the use of
caching techniques. Section 2.5 formalizes the architectural framework adopted
and introduces two baseline snippet cache organization. In Section 2.6 we in-
troduce the concept of supersnippet, and we propose a caching algorithm for
building and maintaing supersnippets. Then, in Section 2.9 we report on the
effectiveness of our proposed algorithm, while in Section 2.9.2 we show the
performance results. Finally, in Section 2.10 we draw some conclusions.

2.2 Text summarization techniques

The techniques to generate good surrogates Sd of a document d (see Ta-
ble 2.2) are those for summarizing text, and are based on the function I(s)
that estimates the document’s information contained in each sentence s ∈ d.

There are several ways to compute I(s):

Luhn Method: One of the first approach for text summarization is proposed
by Luhn [96]. The method exploits the term frequencies tf in order to
assign a weight to each term t ∈ s. A term t is considered as significant
if tf overcome a threshold T , whose value depends on the number of
sentences of d.

According to Lu and Callan [94], a sentence s is assigned a score I(s) that
depends on the so-called clusters, which are particular sequences of terms
included in s. A cluster starts and ends with a significant term, and does
not include long subsequences of insignificant terms. A cluster is scored
on the basis of the ratio between the significant and the total number of
terms included in the cluster. Finally, the importance of sentence s, i.e.
its informative content I(s), is given by the maximum score of all the
cluster in s.

TF-IDF Method: Tsegay et al. [144] adopts a classical TF-IDF (Term
Frequency Inverse Document Frequency) method to score the various
sentences s in d. We can consider this method as an extension of the
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Luhn one, which only exploits TF. Unfortunately, this technique needs
a corpus for computing IDF score.

The formula adopted is the following:

I(s) =
∑

t∈s−stopwords

(log tf + 1)× log
N

df

where tf is the raw count of a term t in the document d where s ∈ d,
N = |D| is the number of documents in the collection, while df is the
count of documents that contain term t.

Position in text: Edmundson [54] proposes another weight-based method
that combines the frequency with other heuristics like the position (usu-
ally, first sentences are a natural summary of a document), or the for-
matting (the titles contain meaningful sentences).

Different approaches based on machine learning and many other techniques
have been proposed, we refer to the survey by Radev et al. [119] for an extensive
review. effective method, based on a specific function learned from a training
data, and defined in terms of multiple features extracted from s, has been
devised by [104].

Query biased snippets Sd,q are a particular form of text summarization,
since the selected sentence of d not only depends on the sentence relevance,
but also on a query q. In Tombros and Sanderson [143], each sentence has the
following score:

s rel(s, q) =
|s ∩ q|2
|q|

where |s∩q| is the number of query terms in the sentence s and |q| the number
of query terms: the more query terms a sentence contains, the higher is its
score. The relevance of a sentence becomes a function R(s, q) biased on query
q:

R(s, q) = k1 s rel(s, q) + k2 I(s)

where k1, k2 are arbitrary weigh parameters.

2.3 WSE caching techniques

Query logs record historical usage information, and are a precious mine
of information, from which we can extract knowledge to be exploited for a
lot of different purposes [129]. The analysis of common usage patterns to
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Figure 2.1: Sketch of a WSE architecture.

optimize system performance by means of caching techniques is one of the
most important uses of such source of information.

The good efficiency of caching techniques in WSE implementation is moti-
vated by the inverse power law distribution of query topics searched for [157,
129]. This high level of sharing justifies the adoption of a caching system for
Web search engines, and several studies analyzed the design and the manage-
ment of such server-side caches, and reported about their performance [99, 92,
55, 9].

The SERPs returned for frequently submitted queries are cached on the
WSE FE (see Figure 2.1 to improve responsiveness and throughput, while
index entries of terms commonly occurring in user queries are cached on BE
to make faster query processing. Even partial results computed for popular
sub-queries can be cached to further enhance performance.

Lempel and Moran propose PDC (Probabilistic Driven Caching), a query
result caching policy based on the idea of associating a probability distribution
with all the possible queries that can be submitted to a search engine [92]. PDC
uses a combination of a Segmented LRU (SLRU) cache (for queries regarding
the first page of results), and a heap for storing answers of queries requesting
pages next to the first. Priorities are computed on the basis of historical data.
PDC performance measured on a query log of AltaVista is very promising (up
to 53.5% of hit-ratio with a cache of 256, 000 elements and 10 pages prefetched)

Fagni et al. show that combining static and dynamic caching policies to-
gether with an adaptive prefetching policy achieves even a higher hit ratio [55].
In their experiments, they observe that devoting a large fraction of entries to
static caching along with prefetching obtains the best hit ratio. They also
state the impact of having a static portion of the cache on a multithreaded
caching system. Through a simulation of the caching operations they prove
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that, due to the lower contention, the throughput of the caching system can
be doubled by statically fixing a half of the cache entries. This behavior is
confirmed also in [9] where the impact of different approaches, such as static
vs. dynamic caching, and caching query results vs. caching posting lists are
studied.

Caching techniques can also be exploited by BE, by keeping in cache the
uncompressed postings lists (or portions of them) associated with terms that
are frequently and/or recently used. For a survey about these techniques, and
the tradeoff between caching policies adopted by the FE and/or BE compo-
nents of a WSE please refer to [9].

With regard to DR caching we can mention the idea of the Snippet En-
gine [144, 146], in which the original DR documents are replaced with their
surrogates. This improves DR caching, since a surrogate takes up less space
than the original one (size can range from 20% to 60% of the original docu-
ment). Moreover, producing the snippets from a surrogate is faster than from
the original document, because we have less sentences to compare with the
query.

Turpin et al. [146] additionally compress the surrogate with a semi-static
compression model, thus obtaining significant improvement in the performances.
Moreover, Tsegay et al. [144] proves that query-biased snippets built from sur-
rogate are, in most cases, identical to those built from the whole document.
They also provide an approach named simple go-back (SGB): if a surrogate
does not contain all the terms of the query, SGB builds the snippet from the
original disk-stored document.

2.4 Motivations

In this Chapter we propose a new approach for generating query-biased
snippets from concise surrogates of documents cached in main memory. Our
thesis is that the knowledge stored in query logs can help in building concise
surrogates that allow high-quality query-biased snippets to be efficiently gen-
erated. We thus start our study by analyzing a real-world query log, with
the aim of understanding the characteristics and the popularity distribution
of URLs, documents and snippets returned by a WSE.

In our experiments we used the MSN Search query log excerpt (RFP 2006
dataset provided by Microsoft). Such query log contains approximately 15
million queries sampled over one month (May 2006), and coming from a US
Microsoft search site (therefore, most queries are in English). In particular, we
consider two distinct datasets extracted from the query log: the first (which
we call D1) contains 1, 500, 000 queries and it is used for analysis purposes and
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Dataset Queries Distinct Queries Distinct Urls (top 10)

D1train 1, 000, 000 601, 369 4, 317, 603
D1test 500, 000 310, 495 2, 324, 295

D2train 9, 000, 000 4, 447, 444 25, 897, 247
D2test 4, 500, 000 2, 373, 227 12, 134, 453

Table 2.1: Main characteristics of the samples of the MSN query log used for
the experiments.

to motivate our approach, while the second (D2) contains 14, 000, 000 queries
and it is used to experimentally assess the performance of our technique.

Both datasets are further split in a training and a testing segment. Table 2.1
reports the main characteristics of the samples of the two datasets used for the
experiments. For each query in the two datasets we retrieved the corresponding
SERP via the Yahoo! Search BOSS API. Thus, for each query we stored the
top-10 most relevant URLs and query-biased snippets as provided by Yahoo!.
Moreover, we downloaded also the documents corresponding to all the URLs
returned for the distinct queries occurring in the smallest dataset D1.

2.4.1 Analysis of the query logs

The first analysis conducted by using the D1 dataset tries to answer a very
simple question: “is there temporal locality in the accesses to documents that
are processed for extracting snippets to be inserted in the SERPs?” If the
answer to this question is positive, we can think to minimize the cost of such
accesses by means of some caching technique. The question is somehow trivial
to answer if we consider the high sharing of query topics studied in several
papers (e.g., [55]). If the same query topics are shared by several users, the
same should happen for the top results returned by the WSE for these queries.

We measured directly on our dataset the popularity distribution of docu-
ments occurring within the top-10 URLs retrieved for user queries in D1: as
expected, the plot in Figure 2.2 shows that document popularity follows a
power-law distribution. By looking with attention at the plot, we can already
claim a presence of locality in the accesses to documents that goes beyond the
locality in the user queries. We can in fact note that the top-10 most frequently
accessed documents do not have the same popularity. This means that some
of the top-10 documents returned for the most frequent query present in the
log are returned among the results of some other query. An high sharing of
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Figure 2.2: Popularity distribution of documents retrieved among the top-10
results (log-log scale).

URLs retrieved is thus present due to the well-known power-law distribution
of query topics popularity, but also due to the sharing of the same URLs in the
results’ sets of different queries. From Table 2.1 we can see that D1 contains
about 912k distinct queries out of 1.5 millions, but only 6,640k distinct URLs
occur among the 15 millions documents returned as top-10 results for these
queries. Note that if all the results returned for the distinct queries would be
completely disjoint, the distinct URLs should be 9,120k, about 27% more.

This high sharing in the URLs returned to WSE users surely justifies the
adoption of caching techniques. Moreover, the sharing of URLs also among the
results of different queries motivates the adoption of caching at the document
level for speeding-up the generation of snippets, in addition to the query results
cache commonly exploited in WSEs. Unfortunately, caching documents is very
demanding in term of amount of fast memory needed to store even the most
frequently accessed document.

However, other researchers already investigated the exploitation of lossless
or lossy compression techniques for reducing memory demand, and proved that
effective snippets can be generated also from document surrogates that retain
less than half of the original document content [146, 144]. In this work we
proceed further in the same direction, and propose an effective, usage-based
technique for generating and managing in a cache much more concise document
surrogates.

Having this goal in mind, next question we must answer is the following:
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Figure 2.3: Number of distinct snippets (δu) per document distribution (log-log
scale)

“how many different snippets have to be generated for a single document?” The
more the number of different snippets generated by a single document, richer
the content and larger the document surrogate from which these snippets can
be generated.

Let us denote by δu the number of different snippets associated with URL u.
Figure 2.3 shows that also δu follows a power-law distribution: a few URLs have
several different snippets being generated and returned to the user. Indeed,
about 99.96% of URLs have less than 10 snippets associated with them, and
about 92.5% of URLs have just a single snippet associated with them. This
means that the large majority of documents satisfies a single information need,
and therefore just one snippet is usefully retrieved for them. On the other side
of the coin, we have that about 8% of documents retrieved originate more than
one snippet. These documents are potentially retrieved by different queries
addressing different portions of the same document. To generate efficiently
high-quality snippets for these documents may thus require to cache a richer
surrogate.

Our thesis is that in most cases, even when the same URL is retrieved by
different queries, the snippets generated are very similar. This happens, for
example, in the case of query specializations and reformulations, synonyms,
spell corrections, query-independent snippets such as those returned for navi-
gational queries. To further investigate this point, in Figure 2.4 we show, for
the 1,000 most frequently retrieved URLs, the number of distinct queries that
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retrieved them, and the corresponding number of distinct snippets generated.
It is apparent that while many distinct queries retrieve the same document,
only a small number of snippets, typically less than 10, is generated. This
proves that when the same URL answers distinct queries, most of these differ-
ent queries share exactly the same snippet.

Our proposal tries to exploit this interesting fact by introducing a novel
snippeting strategy that allows to devise concise and effective document sur-
rogates based on the past queries submitted to the WSE, and to exploit simi-
larities among queries retrieving the same URL.
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Figure 2.4: For the top-1,000 popular documents: number of distinct queries
retrieving each document and number of distinct snippets associated with that
document.

2.5 Architectural framework

The WSE subsystem responsible for query answering, as sketched in Fig-
ure 2.5, is usually made up of three cooperating components [17]:

WSE Front-End (FE) is in charge of managing the interactions with users:
it receives a stream of queries, and returns the result pages built by
exploiting the two other components.

The WSE Back-End (BE) for each query received from FE, extracts the
top-k most relevant documents in its possibly distributed indexes, and
returns to FE the corresponding document identifiers (docIDs).
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Figure 2.5: Sketch of the architecture of our testbed.

The WSE Document Repository (DR) is assigned the task of producing
the result page by enriching and making user-understandable the ranked
lists of docIDs returned by FE. More specifically, for each docID in the
result set, DR retrieve the corresponding URL, and generates the snippet
that summarizes, as shortly and clearly as possible, the query-biased
content of the associated document.

In Figure 2.5, we illustrate the data flow. The user query q submitted to the
WSE is received by FE (step 1). This forwards the query to BE (step 2) which
is in charge of finding, via the distributed index, the most relevant documents
to the query, and returns to FE the corresponding document identifiers (step
3). FE sends the query and the docID list to DR (step 4) which returns the
corresponding query-biased snippets (step 5). Finally, the SERP is built by
FE and returned to the user (step 6).

In order to improve throughput and save redundant computations, all the
three components may exploit caching. FE caches SERPs of frequent queries,
BE may cache portions of the postings lists of terms frequently occurring in
user queries, and DR may cache frequently requested documents. In this work
we focus on issues deriving from the use of caching on DR. For its evaluation
we also consider the presence of a query result cache on FE, but the caching
of postings lists, exploited by the various Query Processor in BE, is out of the
scope of this work.

2.5.1 FE Cache

FE usually hosts a large cache storing results of recently submitted queries.
This cache was proved to be very effective and capable of answering more than
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one third of all the queries submitted to commercial WSEs without involving
the BE [9, 55, 92, 99]. The cache is accessed by supplying the current query
as the key. Whenever a hit occurs, the FE may avoid to forward the query to
BE, since the most relevant document are already present in the cache. The
steps 2 and 3 are skipped, thus reducing the load at the BE. Depending on the
organization of the FE cache, the DR may or may not invoked for generating
the snippets. We distinguish between two possible caches types hosted on FE:

RCacheDocID stores in each entry the docIDs of the most relevant documents
to a given query;

RCacheSERP uses larger entries to store all the information contained in a
SERP, that is both the URLs and query-biased snippets.

In case of a miss in a RCacheDocID cache, the most relevant documents are
requested from BE (steps 2,3), and inserted into the cache with key q for future
reference. Since snippets and URLs are not stored, both in case of a hit and
in case of a miss, these must be requested from DR (steps 4,5).

If FE adopts the RCacheSERP, when a hit occurs, FE can retrieve the SERP
for the query, and promptly return it to the user (step 6). The DR is not
invoked, since the cache entries also stores URLs and snippets. In case of a
miss, both the BE and DR must be invoked for producing the result page,
which is also cached into RCacheSERP. The type of result cache hosted on
FE clearly affects the stream of requests processed by DR. If FE hosts an
RCacheDocID cache, DR must process all the incoming WSE queries. It is
worth noting that, from the point of view of the DR workload, this case is
exactly the same as an architecture where no result caches are present. On
the other hand, the presence of an RCacheSERP cache on FE strongly reduces
the volume of requests issued to DR, since only the queries resulting in misses
on RCacheSERP generate requests for URLs and snippet extractions.

2.5.2 DR Cache

Given a query q and a document identifier docID, DR retrieves the URL
of the corresponding document and generates a query-based snippet.

The DR cache, which aims at reducing the number of disk accesses to the
documents, is accessed by docID, while query q is used to select the best
sentences from the document associated with docID. In literature, there are
two main cache organizations:

DRCachedoc each cache entry contains an integral copy of a document;
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DRCachesurr each entry stores a surrogate of a document, which includes its
most relevant sentences precomputed offline;

The DRCachedoc works as a sort of OS buffer cache, speeding up the access
to the most popular documents present on disk. Once the full document is
retrieved a snippetting algorithm may easily generate a proper summary for
the given query. However, the document size is significantly larger than the
required snippet. Indeed, as shown in the previous section, for most documents
only a single snippet is generated, and for the most popular documents, less
than 10 snippets are sufficient to answer any query. Therefore, most of the
cache memory is actually wasted.

DRCachesurr tries to increase the number of entries cached in a given amount
of memory by exploiting document surrogates which are shorter of the original
document still retaining most of the informative content. Document surro-
gates are generated offline for each document, and are accessed and stored
in DRCachesurr in place of the original documents. The size of the surrogates
induces a trade-off between cache hit-ratio and snippet quality. On the one
hand, having small surrogates allow to cache more of them, thus allowing to
increase the hit ratio. On the other, surrogates have to be sufficiently large in
order to produce high quality snippets for all the possible queries retrieving a
document.

This Chapter proposes a novel DR cache, namely DRCacheSsnip, whose en-
tries are particular document surrogates, called supernippets, whose construc-
tion and management are based on the past usage of the WSE by the user
community. The idea behind DRCacheSsnip is to exploit the past queries sub-
mitted to the WSE in order to produce very concise document summaries,
containing only those document sentences being actually useful in generating
snippets. Also, the size of each summary may be very small when only a few
sentences were needed to generate the snippets for the past queries, or it may
be larger when there are many useful sentences, and thus several topics of
interest for users, in each document. We prove that this cache organization
allows for high hit ratio and high-quality query-biased snippets.

2.5.3 Answering queries

We can now discuss the flows of control and data occurring in the WSE
subsystem depicted in Figure 2.5. In particular, the interactions among the
components FE, BE, and DR, highlighted with numbered arrows in the figure.

Let q be a generic user query submitted to the WSE. q is received by FE
(1), which looks up in the query result cache. We have to distinguish between
the types of cache hosted on FE, either RCacheSERP or RCacheDocID.
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RCacheSERP If FE hosts an RCacheSERP cache, when a hit occurs, FE can
promptly built the complete page of results answering q by using the
information stored in the entry of the cache. Then FE can soon return
the page to the requesting user (6).

If a miss occurs, the FE forwards q to BE (2), and waits for the set
of the top-k docIDs that best match q (3). These k docIDS are then
communicated to DR along with query q (4) to retrieve the k URLs
and the associated query-biased snippets generated by DR. Such data
are finally received by FE (5), and are used to prepare the result page
returned to the user (6). The same page is inserted in the RCacheSERP
cache if dictated by cache policy.

RCacheDocID In case FE hosts an RCacheDocID cache, FE must interact with
DR even when a hit occurs in the result cache. Only the list of the top-k
docIDs that answers q is in fact stored in cache, and thus the associated
URLs and snippets must always be requested from DR (4 and 5).

When a miss occurs, the list of the top-k docIDs answering q are still
requested from BE (2 and 3), but, unlike the previous case, this list can
be directly inserted with key q in RCacheDocID for future reference.

The type of result cache hosted on FE clearly affects the stream of requests
processed by DR. If FE hosts an RCacheDocID cache, DR must process all the
incoming WSE queries. It worth noting that, from the point of view of the
DR workload, this case is exactly the same as an architecture where no result
caches are present on the FE component.

On the other hand, the presence of an RCacheSERP cache on FE strongly
reduces the volume of requests issued to DR, since only the queries resulting
in misses on the RCacheSERP cache generate requests for URLs and snippet
extractions.

2.6 DR Cache Management

As discussed in Section 2.5 and illustrated in Figure 2.6, the DR can host
different types of caches, either DRCachedoc, DRCachesurr, or DRCacheSsnip. To
discuss the various cache organizations, it is worth introducing some notation,
summarized in Table 2.2.

Let D be the set of all the crawled documents stored in the repository. Each
d ∈ D is composed of a set of sentences, i.e. d = {s1, s2, · · · , sn}. We denote by
Sd, Sd,q, and SSd,Q, the surrogate, snippet, and supersnippet of a document d ∈
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Symbol Meaning

D The collection of the crawled documents
d A generic document (d ∈ D) associated with a distinct DocID

and a distinct URL, composed of a set of sentences si, i.e.,
d = {s1, s2, · · · , sn}

s A sentence composed of several terms
t A term included in a sentence s
Sd A surrogate that summarizes document d, and includes its

most important sentences
Sd,q The query-biased snippet of document d, which includes the

sentences of d that are the most relevant to q
SSd,Q The supersnippet of document d, computed over the set Q of

past queries
I(s) The informative content of a sentence s
R(s, q) The relevance of sentence s to query q

Table 2.2: Table of Notation

D. The generation of these summaries from d actually consists in selecting a
suitable subset of its passages/sentences according to some relevance criterium.
Note that the notation used recalls that a surrogate Sd is a query-independent
excerpt of d, while a snippet Sd,q depends on the query q. Finally, the content
of a supersnippet SSd,Q, SSd,Q ⊆ d, depends on the set Q of past queries
submitted to the WSE which retrieved document d. The lookup keys of all
the three caches DRCachedoc, DRCachesurr, and DRCacheSsnip are the unique
identifiers of the various documents (docIDs). Given a key docID associated
to document d, then the possible contents of the entries of caches DRCachedoc,
DRCachesurr, and DRCacheSsnip are, respectively, d, Sd, and SSd,Q.

About the memory hierarchy of DR, below the cache level, which is located
in main memory, we have the disk -stored document repository, which keeps
the collection of all the indexed documents D and the associated URLs. Both
the integral documents 1 and the URLS are directly accessible by supplying
the corresponding docIDs. Figure 2.6 shows these disk-based levels of memory
hierarchy in DR.

1In case DR hosts a DRCachesurr cache, below the cache level we have surrogates Sd of
all the documents, which are statically generated from each d ∈ D.
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Figure 2.6: Three possible DR organizations, hosting either DRCachedoc, DR-
Cachesurr, or DRCacheSsnip. Note the activities labelled A, B, and C, whose
size models the associated computational load, which in turn depends on the
size of the input: either documents d, surrogates Sd, or supersnippets SSd,Q.

2.7 Surrogates, snippets, and supersnippets

In this section we discuss how the best sentences to include into Sd, Sd,q,
and SSd,Q can be devised. For the sake of simplicity hereinafter we will assume
surrogates, snippets, and supersnippets composed by sets of sentences. The
definitions and metrics discussed can be however trivially adapted to passages
or any other piece of text of fixed or variable size.

2.7.1 Surrogates

Several proposals appeared in the literature regarding the generation of
concise surrogates retaining most of the informative content of a document. In
Section 2.2 we survey some of these methods. They are generally based on a
function to evaluate the informative content I(s) of each sentence s ∈ d, and
on a constraint on the size of the surrogate, e.g. the surrogate has to contain
a fraction x, 0 < x < 1, of all the sentences of the original document. Given
I(s) and x, the best surrogate Sd for d is the one that maximizes:

Sd = arg max
σ⊆d

∑
s∈σ

I(s), where |σ| ≤ bx · |d|c
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2.7.2 Query-biased Snippets

Query biased snippets Sd,q are generated for all the top-k documents re-
trieved by a WSE for query q, by means of a function R(s, q), which measure
the relevance to q of the various sentences s ∈ d. Hence, given function R(s, q)
and the maximum size sz of a snippet, expressed in terms of the number of
sentences, the best snippet Sd,q for a query q and a document d is the one that
maximizes:

Sd,q = arg max
σ⊆d

∑
s∈σ

R(s, q), where |σ| ≤ sz (2.1)

In our experiments, a query-based snippet, extracted from either a doc-
ument d or a surrogates/supersnippet of d, is simply obtained by applying
Equation (2.1) with a relevance score computed as follows:

R(s, q) =
|s ∩ q|2
|q|

where s and q are the bags of terms occurring in s and q.
This corresponds to ranking all the sentences and selecting the top-k ranked
sentences. In our experiments, we set k = 3.

2.7.3 Supersnippets

Given a set Q of queries submitted in the past to the WSE, e.g., the set
of queries recorded in a query log, let us consider the set Qd, Qd ⊆ Q of
past queries having document d in the result set returned to the user. Set
Qd contains all the past queries for which document d was considered relevant
by the WSE ranking function. By using a snippeting technique as the one
sketched above, the set Ud =

⋃
q∈Qd Sd,q can be easily built. While a document

d can contain several different sentences, the above set only contains those
sentences of d that are likely to be of some interest to past WSE users. Ud
can be thus considered a surrogate of d, whose construction, and thus the
relative criterium for sentence selection, is usage based. By analyzing a query
log spanning a long time period, we have shown that the number of different
snippets for a given document is in most cases very small. Thus, we can expect
also the size Ud to be small. Moreover, some redundancies can be found in Ud
because some sentences are very similar to others.

Given a similarity score sim(s, s′) between sentences s and s′ of a document,
we define the supersnippet SSd,Q as the set of medoids [85] obtained by a k-
medoids clustering, run on the set of sentences contained in Ud that minimizes
inter-cluster similarities and maximizes intra-cluster similarities. The number
of clusters, i.e. k, itself is the optimal one and it is not a-priori fixed.
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A careful reader may note some resemblance of the term “supersnippet”
to “superstring”. In the “superstring problem”, given a input set of symbol
strings, the goal is to find the shortest string that includes as sub-strings all the
others. Our supersnippet is made up of several strings, but, in a similar way
as superstring, we aim to reduce its size by eliminating redundant sentences.

The above definition of a supersnippet cannot be used in practice. The
main reason is that we need an efficient algorithm for constructing them.
Therefore, we adopt the following greedy strategy. We read queries in the same
order as they arrive. For each query we retrieve the corresponding SERP. For
each snippet in the result set, we consider each sentence contained within. In
the corresponding supersnippet, we add a sentence only if its similarity with
all the previously added ones is below a certain threshold. In our experiments,
we used the Jaccard index measured on sentence terms as similarity metric,
and set the threshold to 0.8, i.e. less than 80% of the terms in the candidate
sentence appear in the sentences already added to the supersnippet.

Furthermore, in our experiments we bound the maximum number of sen-
tences forming a supersnippet. Several approaches can be adopted to limit
to sz sentences the maximum size of a supersnippet. A first static approach
consists in sorting all the sentences of SSd,Q by frequency of occurrence within
snippets Sd,q,∀q ∈ Qd. The first sz sentences can in this case be considered as
the most relevant for document d on the basis of their past usage.
Another possibility is to consider a supernippet as a fixed size bin. This bin is
filled with new sentences occurring in snippets retrieved for the queries in Qd.
When the bin is completely filled, and another sentence has to be inserted, a
replacement policy can be used to evict from the supersnippet a sentence to
make place for the new one.

In this work we followed this second possibility and adopted a simple
LRU policy to always evict the least recently used sentence first. We pre-
ferred to adopt a dynamic supersnippet management policy to avoid the ag-
ing of statically-generated supersnippets as time progresses and interests of
users change. We leave as a future work the analysis of the effect of aging
on static supersnippets, as well as the study of the performance of alterna-
tive sentence replacement policies. The pseudocode reported in Algorithm 1
sketches the simple management of DRCacheSsnip. Function Lookup(q,DocID)
is called to lookup for a supersnippet of d in the cache, and implements the
LRU management of DRCacheSsnip entries. Lookup(q,DocID) calls function
UpdateSS(SSd,Q, DocID) to update as above described the sentences stored
within SSd,Q.

Unlike other approaches, where the document surrogates are statically de-
termined, our supersnippets are thus dynamically modified on the basis of
their usage. Their contents change over time, but depend on the query-biased
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snippets extracted in the past from the original documents to answer to user
queries. As a consequence of this approach, in our supersnippet cache hosted
in the DR, a miss can occur also when the docID key is matched, but the
query-biased snippet returned for it results to be of low quality. Even in this
case a miss penalty must be paid, and a query-biased snippet must be ex-
tracted from the integral document stored on disk. This new snippet is then
used to update the cached supersnippet on a LRU basis.

2.7.4 Query-biased Snippets: Documents vs. Surro-
gates

In Figure 2.6 we show that when DR hosts either DRCachesurr or DR-
CacheSsnip, a query-biased snippet is extracted from a cache entry that contains
a surrogate of d. More specifically, according to Equation (2.1), we extract the
query-biased snipped Sd′,q from d′, where d′ = Sd or d′ = SSd,Q. While Sd is
a proper surrogate of d, the supersnippet SSd,Q is a special surrogate whose
construction is query-log based.

2.8 Cache management policies

In this section we discuss the three possible organizations of DR illustrated
in Figure 2.6, and the relative cache management issues. The first two caches
DRCachedoc and DRCachesurr are pretty standard. The docID is used as look-up
key. If no cache entry corresponding to the key exists, a miss occurs. Then the
lower memory level (disk-based) is accessed to retrieve the associated URL,
along with either the document or the surrogate. These caches can be static,
i.e. the cache content does not change during the cache utilization (although
it can be updated by preparing off-line a new image of the cache), or dynamic.
In the last case, many replacement policies can be used in order to maximize
the hit ratio, trying to take the largest advantage possible from information
about recency and frequency of references.

Note that for both caches, once retrieved the matching cache entry, the
query-biased snippet must be extracted from the content of this entry. The
two activities, labeled as A and B, correspond to snippet extractions. The
cost of extracting the snippet from the document surrogate (B) is smaller
than from the whole document (A). In general, both the hit cost and the miss
penalty of DRCachesurr are smaller than the ones of DRCachedoc.

DRCacheSsnip is more complex to manage. As for the other two caches,
docIDs are used as look-up keys. If no cache entry corresponding to the key
exists, a miss occurs. In this case the miss penalty is more expensive, since the
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query biased snippet must be first extracted from the document (see activity
labeled as A), and the copied to a cache entry.

DRCacheSsnip needs to exploit a special cache policy, i.e. a special rule, to
determine whether a request can be satisfied using the cached supersnippet.
More specifically, even when the look-up of a docID succeeds, the query-biased
extraction (see activity labeled as C) can fail, because the snippet results of
low quality with respect to the query. In this case we have a miss of quality.
This leads to accessing to the disk-stored repository to retrieve the whole
document. The query biased snippet is thus extracted from the document (see
activity labeled as A). This query-biased snippet is finally used to update the
corresponding cache entry, which contains the document supersnippet.

2.9 Cache Effectiveness

The component C, described in the previous section and illustrate in Fig-
ure 2.6, plays an important role for DRCacheSsnip. For each incoming query, it
must be possible to decide whether or not a cached supersnippet contains the
sentences needed to produce an high quality snippet. If this is not the case, a
miss of quality occurs, and the disk-based document repository is accessed.

To this end, a quality function must be defined, which, given the query q
and the supersnippet SSd,q is able to measure the goodness of SSd,q. In the
following we propose and analyze a simple quality metrics, and we compare
the snippets produced by DRCacheSsnip with those returned by a commercial
WSE. Indeed, we compare the quality of the snippets generated by our caching
algorithm, with the quality of the results returned by the Yahoo! WSE. Note
that the Yahoo! WSE is also used to simulate the underlying BE and DR,
thanks to the property of DRCacheSsnip of being independent from the snippet
generation engine.

The proposed metrics takes into account the number of terms in common
between the query q and the generated snippet Sd,q, and it is illustrated in the
following section. This metrics can be used directly by DRCacheSsnip to detect
quality misses.

2.9.1 Snippet quality measure

An objective metrics measuring the quality of the snippet Sd,q for the query
q can take into account the number of terms q occurring in Sd,q: the more query
terms included in the sentences of a snippet, the greater the snippet goodness.
More specifically, we adopt the scoring function proposed in [143]:
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Algorithm 1 DRCacheSsnip caching algorithm.

1: function Lookup(q, DocID)
2: if DocID ∈ C then . cache hit
3: SSd,Q ← C(DocID) . retrieve the supersnippet
4: Sd,q ← Snippet(q, SSd,Q) . generate a snippet
5: if ¬HighQuality(Sd,q, q) then . quality miss
6: Sd,q ←UpdateSS(SSd,Q, DocID, q)
7: end if
8: C.MoveToFront(SSd,Q) . LRU update
9: else . cache miss

10: SSd,Q ← ∅
11: Sd,q ←UpdateSS(SSd,Q, DocID, q)
12: C.PopBack()
13: C.PushFront(SSd,Q) . add a new supersnippet
14: end if
15: return Sd,q . Return the snippet
16: end function

. Update the supersnippet with a new snippet for q
17: function UpdateSS(SSd,Q, DocID,q)
18: d← GetDoc(DocID) . access repository
19: Sd,q ← Snippet(q, d)
20: for s ∈ Sd,q do . update the supersnippet
21: s′ ← arg maxt∈SSd,Q sim(s, t)
22: if sim(s, s′) ≥ τ then
23: SSd,Q.MoveToFront(s′) . LRU update
24: else
25: SSd,Q.PopBack()
26: SSd,Q.PushFront(s′) . add a new sentence
27: end if
28: end for
29: return Sd,q
30: end function
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score(Sd,q, q) =
|Sd,q ∩ q|2
|q| (2.2)

where Sd,q and q correspond to the sets of terms appearing, respectively, in
the sentences of Sd,q and in the query q.

We claim that a snippet Sd,q is of high quality if q ⊆ Sd,q for queries with one
or two terms, or if Sd,q contains at least two query terms for longer queries. It
can easily shown that our good quality criteria is met whenever score(Sd,q, q) ≥
1.

Proposition 1. Let q and Sd,q be the sets of terms of q and Sd,q, respectively. If
score(Sd,q, q) ≥ 1 then either |q| ≤ 2 and q ⊆ Sd,q, or |q| > 2 and |Sd,q∩q| ≥ 2.

Proof. If |q| = 1 then score(Sd,q, q) ≥ 1 trivially implies that q ⊆ Sd,q.
If |q| > 1 then score(Sd,q, q) ≥ 1 means |Sd,q ∩ q|2/|q| ≥ 1. By a simple

arithmetical argument we have that |Sd,q ∩ q|2 ≥ |q| ≥ 2⇒ |Sd,q ∩ q| ≥
√

2 ≈
1.4. Since |Sd,q ∩ q| must be an integer value, then we can conclude that
|Sd,q ∩ q| ≥ 2. This also is equivalent to q ⊆ Sd,q for the case |q| = 2.

This rough but fast-to-compute score measure is exploited in the imple-
mentation of DRCacheSsnip to evaluate on-the-fly the goodness of the snippets
extracted from the document supersnippets stored in the cache. If the score
is lower than 1, the cache policy generates a quality miss.

We apply this quality score to the snippets generated by the Yahoo! WSE
for the top 10 document returned to the D1 query log. It is worth noting
that the fraction of these snippets resulting of good quality – i.e., with score
greater or equal to 1 – is high, but remarkably lower than 100%: the high
quality Yahoo! snippets resulting generated from the D1 query log are about
81% only. In fact, the snippets returned by Yahoo! do not always contain the
terms of the query. This is not always due to badly answered queries. For
example, this may happen when a query matches some metadata (e.g., the
URL name) and not the snippet’s sentence, or when only a few terms of a
long query are actually included in the document retrieved. Even misspells or
variations in navigational queries aiming at finding well-known portal websites
are typical example of this phenomenon. A deeper study of this issue is however
out of the scope of this work.

To compare with DRCacheSsnip, we set up the following experiment. First
we created the set of supersnippets for the documents being returned by the
system. Each query in the D1/training query log was submitted to the Yahoo!
WSE, and we collected the returned documents and their snippets. For each
document, the corresponding supersnippet was generated by picking the most
representative sentences on the basis of the returned snippets as describe in
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the previous section. We run different experiments by allowing a maximum
number of 5 and 10 sentences in each supersnippets. Note that the resulting
supersnippets have varying size, which depends on the number of distinct
queries related with a document, and with the number of its sentences included
in the snippets related with those queries. Therefore, many supersnippets have
a number of sentences smaller than the allowed maximum.

Second, the D1/test was used to assess the quality of the generated su-
persnippets. Similarly as above, for each query in D1/test we collected the
corresponding results, by ignoring those documents for which a supersnippet
was not generated. Note that in case of previously unseen documents, the
DRCacheSsnip caching algorithm would retrieve the correct snippet from the
document repository, therefore it makes sense to discard those documents for
the evaluation of the supersnippets goodness. For each collected document we
computed the score of the snippets generated from the corresponding super-
snippet, and, in particular, we measured the fraction of them being of high
quality.

In Figure 2.7 we report the fraction of high quality snippets generated by
the Yahoo! WSE and by the exploiting supersnippets of maximum size 5 and 10
sentences. Values are averaged over buckets of 100,000 consecutive (according
to the query log order) snippets.

The percentage of good snippets generated by Yahoo! is only slightly higher2.
Of course, the quality measured for the supersnippeting technique increases
with the number of sentences included. The score of score(Sd,q, q) averaged
over all the snippets in D1/test is 1.42, 1.39, and 1.38 respectively for the
Yahoo! ground truth, and our technique exploiting supersnippets limited to
10 and 5 sentences. In conclusion, the proposed supersnippeting technique
produces snippets of high quality, very close to those generated by the Yahoo!
search engine. Indeed, with only 5 sentences at most for each supersnippet, a
fraction of 81.5% of the snippets from the whole D1/test are of high quality,
with a very small loss (0.8%) compared with Yahoo!, where this fraction rises
up to 82.3%.

2.9.2 Hit Ratio Analysis

In the previous section we have analyzed the quality of snippets generated
using our novelapproach. In this section we evaluate the effectiveness of the
various DRCache strategies (i.e. DRCachedoc, DRCachesurr, and DRCacheSsnip)
when used in combination with a FECache. Four different DRCache sizes have

2The peak measured for the snippets in the fifth bucket plotted in Figure 2.7 is due to
the presence in the dataset of some bursty queries caused by specific events regarding public
persons.
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Figure 2.7: Average fraction of high quality snippets returned by Yahoo! and
DRCacheSsnip measured for consecutive groups of queries in D1/test.

been experimented: 256, 512, 1024, and 2048MByte. Our experiments are run
on the D2 dataset. We warm up the various caches by executing the stream of
queries from D2/training and we evaluate the various hit ratios using D2/test.
It is worth recalling that, as discussed in the previous section, a hit in DRCache
is when the snippet returned by the cache has score(Sd,q, q) ≥ 1. On the other
hand, if the score is less than one, we say DRCache incurs in a quality miss.

The first set of experiments consists in evaluating the hit ratio of DRCache
when used in combination of a RCacheDocID. Since RCacheDocID only stores
the document identifiers of each results list, all the queries generate requests
to DR, and the size (better to say, the hit ratio) of the FECache does not
affect the performance of DRCache. Table 2.3 shows hit ratio results for five
different DRCache organizations. DRCachedoc, DRCachesurr (doc, and surr in
the table), and DRCacheSsnip. The latter is tested by using three different
maximum supersnippet sizes (i.e. the maximum number of sentences forming
the supersnippet), namely 5, 10, and 15 (i.e. ss5, ss10, and ss15) sentences.
The tests regarding DRCachedoc were done by considering all the documents as
having a size equal to the average size of the documents retrieved by Yahoo!
for all the queries in dataset D1. The size of the surrogates used for testing
DRCachesurr were instead fixed to be half of the corresponding document [144].
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Both DRCachedoc and DRCachesurr are managed using a LRU policy.
The first observation is that in all the cases, hit ratios increase linearly

when cache size increases. Also in this case, the linear trend in the hit ratio
growth is confirmed. Indeed, the growth cannot be indefinite as the maximum
hit ratio attainable is bounded from above by the number of distinct snippets
(considering their quality, too) that can be generated by SERPs for queries in
the stream.

In terms of hit ratio, DRCacheSsnip outperforms DRCachedoc, and DRCachesurr
independently of the size of the cache. On the other hand, we can note that
the maximal size of supersnippets does not affect sensitively DRCacheSsnip hit
ratio.

DRCache Size (in MB) Hit Ratio DRCache

doc

256M 0.38
512M 0.41
1024M 0.44
2048M 0.49

surr

256M 0.41
512M 0.453
1024M 0.49
2048M 0.53

ss5

256M 0.42
512M 0.463
1024M 0.51
2048M 0.554

ss10

256M 0.416
512M 0.462
1024M 0.51
2048M 0.55

ss15

256M 0.413
512M 0.461
1024M 0.51
2048M 0.55

Table 2.3: Hit ratios of DRCache (with DRCachedoc, DRCachesurr, and DR-
CacheSsnip strategies) and RCacheDocID.

An important observation, is that we have a miss in DRCacheSsnip when
either the requested document is not present in cache or when the quality score
is too small (i.e. less than one). Not necessarily this happens when a “good”
snippet cannot be retrieved from DRCacheSsnip. In real cases, for instance,
this might be due to misspelled queries that if automatically corrected before
being submitted to the underlying back end, would result in an acceptable
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score. As an example, consider the query “gmes”, clearly this query can be
easily corrected into “games”. In fact, the snippet generated for the first result
returned by Yahoo! for the query “gmes” is:

“ Games.com has a new free online game everyday. Play puzzle games, hidden

object games, arcade games and more! Games.com has exclusive poker, casino

and card games.”

Since the original query term “gmes” is not included into the snippet, its
quality score is 0, and even if we generate exactly the same snippet as the
one generated by Yahoo!, we would count it as a quality miss. To overcome
this issue, when we have quality score less than one, we consider the snippet
returned by Yahoo! for the same query-document pair. If even the score of
the Yahoo! snippet is low as our, a hit could be counted. Table 2.4 shows the
hit ratio results for the same tests of the previous table when quality misses
are counted as just described. In all the considered cases hit ratio values raise
by about 8%− 9%. Furthermore, this can be probably considered as a better
estimation of real hit ratios that can be attained by our DRCacheSsnip in a
real-world system.

Therefore, we can conclude that in the case of a FE running a RCacheDocID,
the presence of a DRCache decreases considerably the load on the document
server, and that DRCacheSsnip is the best cache organization among the ones
tested.

DRCache Size (in MB) Hit Ratio DRCache

ss5

256M 0.5
512M 0.55
1024M 0.59
2048M 0.63

ss10

256M 0.497
512M 0.548
1024M 0.59
2048M 0.625

ss15

256M 0.493
512M 0.546
1024M 0.59
2048M 0.62

Table 2.4: Hit ratios of DRCacheSsnip (RCacheDocID case) when quality-misses
are counted by comparing quality of snippets with Yahoo! ones.

The next experiment consists in evaluating the effect of a RCacheSERP as
a filter for requests arriving to DRCache. A RCacheSERP cache, in fact, stores
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the whole SERP including the generated snippets. In case of a RCacheSERP
cache hit, then, we do not have to request those snippets to the DRCache,
thus reducing considerably the load on the DRCache. On the other hand, since
frequently requested (i.e. popular) snippets are already built and stored into
the RCacheSERP cache, we expect DRCache’s hit ratio to be lower than the one
obtained when used in combination with RCacheDocID.

Tables 2.5 and 2.6 show hit ratios for various configurations of DRCache.
As in the above experiment, Table 2.6 reports hit ratios when quality-misses
are counted by using the comparison between snippets generated from the
supersnippets and Yahoo! ones.

As expected, in all the cases hit ratios are lower than in the previous cases.
The differences in the hit ratios obtained by DRCacheSsnip with respect to DR-
Cachedoc, and DRCachesurr instead increase remarkably. This prove that our
supersnippets are very flexible and can provide effective snippets also for less
popular queries. Moreover, if we sum up the hit ratios occurring on both FE-
Cache and DRCacheSsnip, we obtain a impressive cumulative hit ratio of about
62%. Note that this is an upper bound to the real cumulative hit ratio. In-
deed, FECache stores duplicate snippets (due to possible shared snippets among
SERPs), therefore the actual cumulative hit ratio may be slightly lower. We
can observe that also in this set of experiments, the maximum number of sen-
tences stored in the supersnippet does not influence heavily the DRCacheSsnip
hit ratio.

2.10 Summary

We have presented a novel technique for scaling up search engine perfor-
mance by means of a novel caching strategy specifically designed for document
snippets. Design choices of our novel DR cache are motivated by the analysis of
a real-world query log that allowed us to better understand the characteristics
and the popularity distribution of URLs, documents and snippets returned by
a WSE. Our DRCacheSsnip stores in its entries the supersnippets that are gen-
erated by exploiting the knowledge collected from the query-biased snippets
returned in the past by a WSE. DRCacheSsnip enables the construction of ef-
fective snippets (having an average quality very close to that measured on our
ground truth) for already processed query/docID pairs and, more importantly,
the “in-cache” generation of snippets also for query/docID pairs not previously
seen. A deep experimentation was conducted using a large real-world query log
by varying the size and the organization of the caches present in an abstract
WSE architecture model. The hit ratios measured for DRCacheSsnip result to be
remarkably higher than those obtainable with other DR cache organizations.
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In particular a hit-ratio of 62% was measured using a DRCacheSsnip cache of
2,048MB and a docID result cache in th FE. In the experimental evaluation,
we considered also the presence of a SERP cache on the FE that filters out
most frequent queries, without asking neither the WSE BE nor the DR. Even
in this case the hit rates measured for our supersnippet-based cache results to
be very high (up to 42%), with a very large difference over the other cache
organizations tested.
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FECache #Entries (Hit
Ratio)

DRCache Size (in MB) Hit Ratio DRCache

128K (0.36)

doc

256M 0.087
512M 0.11

1024M 0.14
2048M 0.19

surr

256M 0.11
512M 0.148

1024M 0.19
2048M 0.25

ss5

256M 0.15
512M 0.217

1024M 0.29
2048M 0.36

ss10

256M 0.141
512M 0.21

1024M 0.287
2048M 0.35

ss15

256M 0.14
512M 0.207

1024M 0.287
2048M 0.35

256K (0.38)

doc

256M 0.083
512M 0.1

1024M 0.134
2048M 0.17

surr

256M 0.104
512M 0.135

1024M 0.177
2048M 0.23

ss5

256M 0.139
512M 0.194

1024M 0.266
2048M 0.34

ss10

256M 0.13
512M 0.189

1024M 0.266
2048M 0.334

ss15

256M 0.12
512M 0.18

1024M 0.266
2048M 0.33

Table 2.5: Hit ratios of DRCache (with DRCachedoc, DRCachesurr, and DR-
CacheSsnip strategies) and RCacheSERP.
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FECache #Entries (Hit
Ratio)

DRCache Size (in MB) Hit Ratio DRCache

128K (0.36)

ss5

256M 0.21
512M 0.29

1024M 0.36
2048M 0.42

ss10

256M 0.2
512M 0.28

1024M 0.356
2048M 0.419

ss15

256M 0.19
512M 0.27

1024M 0.355
2048M 0.419

256K (0.38)

ss5

256M 0.19
512M 0.258

1024M 0.336
2048M 0.4

ss10

256M 0.18
512M 0.251

1024M 0.334
2048M 0.398

ss15

256M 0.18
512M 0.249

1024M 0.332
2048M 0.395

Table 2.6: Hit ratios of DRCacheSsnip (RCacheSERP case) when quality-misses
are counted by comparing quality of snippets with Yahoo! ones.



Chapter 3

Semantic Query
Recommendations

3.1 Introduction

The typical interaction of a user with a Web search engine consists in
translating her information need in a textual query made of few terms. Such
queries are usually stored by the search system in its query log. Mining query
logs to study the users’ past interactions is an effective approach for improving
the efficacy of a search system, and in particular for producing relevant query
suggestions. This is based on the assumption that successful search activities
by previous users can be of interest for others.

In this Chapter we focus on how to improve query recommendation through
entities. We believe that the “Web of Data” can be profitably exploited in the
query log mining process to alleviate possible vocabulary mismatch problems,
and that it can be leveraged to provide more user-friendly query suggestions.
Search query recommendation techniques [35, 29, 13] are commonly used in
web search engines to help users refine their queries. These technologies ana-
lyze the user behavior by mining the system logs in order to find the correlation
between the user’s information need (i.e. what? - visited pages), what the user
is searching for (i.e. how? - query terms) and the content and structure of
the information pool (i.e. search index). Even so, the usefulness of the query
recommendations is limited by their inherent weaknesses, such as:

Data Skewness usually query popularity presents a power-law-like curve
distribution. Due to that, query recommender systems whose models rely
on the previous queries are really good in producing recommendations
for head queries, poor in producing recommendations for queries in the
long tail, and often they are not able to produce suggestions for queries
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that do not appear in the previous history [32, 139].

Misspelling and Multilinguality users often spell wrongly the names of
the searched items, or perform queries in different languages. For exam-
ple, one could simply check the various ways of addressing in DBPedia
the information about Da Vinci’s famous painting Mona Lisa1 (see the
label and the wikiPageRedirects sections);

Incompleteness and Ambiguity when searching for information about
the well known painter, most of the users are simply using the terms da

vinci, which could mean several different things2.

In this Chapter we present Semantic Search Shortcuts(S3) a new approach
for producing enriched query recommendations. In Section 3.2 we introduce
Europeana, one of the largest digital libraries in the world, collecting more than
20 million records from European museums, libraries, archives and multi-media
collections. We collaborated with the Europeana Fondation, which shared with
us their users’ historical data. In Section 3.3 we perform a detailed analysis
of these logs, both from a query and session perspective. In Section 3.4 we
resume state of the art in query recommendation and in Section 3.5 we intro-
duce Search Shortcuts [35] (SS), a query recommender system able to provide
relevant suggestions for rare or never seen queries. In Section 3.6 we describe
our semantic version S3; it is worth observing that our extension does not
only suggestion raw text queries but entities (represented by URIs). This in-
volves several benefits: e.g., being able to personalise the suggestions with the
user’s language, improve diversification (since there are not suggestions about
the same entity e.g., mona lisa and gioconda). Moreover, in Section 3.7, we
propose a new approach for reducing human effort in evaluating the quality
of the suggestions, based on some measures for evaluating relevance and di-
versity on a list of suggestions. These measures exploit the entity relatedness
concept, a graph based measure that estimates the semantic distance between
two entities (which we investigate in deep in Chapter 4). We show that our
proposed recommender overperforms SS both for quality and diversification
of the suggestions, also if we consider rare queries. Finally in Section 3.8 we
draw our conclusions.

3.2 Europeana

The strong inclination for culture and beauty in Europe created invaluable
artifacts starting from antiquity up to nowadays. That cultural strength is

1http://dbpedia.org/page/Mona_Lisa
2see for example http://dbpedia.org/page/Da_Vinci_(disambiguation)

http://dbpedia.org/page/Mona_Lisa
http://dbpedia.org/page/Da_Vinci_(disambiguation)
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recognized by all people in the world and makes Europe the destination for
a half of the international tourists 3. More than 220 million people visit the
European countries yearly for spending their holidays.

The European Commission is aware about the value of this cultural heritage
and decided to make it more accessible to the public by supporting digitization
of the cultural heritage and by financing the Europeana group projects. The
first prototype of the Europeana Portal4 was launched in autumn 2008 and
contains more than 20 million items.

Due to increasing amount of information published within the portal, the
access to the description of a specific masterpiece becomes each day a more
time consuming task, when the user is not able to create a very restrictive
query. For example, searching for general terms like renaissance or art nouveau

produces more than 10, 000 results. If a user searches for the term Gioconda

the system retrieves a couple of hundred documents, while searching for Mona
Lisa, Da Vinci only returns twenty images of the well known painting. These
examples show how important is to formulate good queries in order to satisfy an
information need. This is a challenging task, given the fact that the document
base is cross-domain, multi-lingual and multi-cultural.

3.3 The Europeana Query Log

A query log keeps track of historical information regarding past inter-
actions between users and the retrieval system. It usually contains tuples
〈qi, ui, ti, Vi, Ci〉 where for each submitted query qi the following information is
available: i) the anonymized identifier of the user ui, ii) the submission times-
tamp ti, iii) the set Vi of documents returned by the search engine, and iv)
the set Ci of documents clicked by ui. Therefore, a query log records both
the activities conducted by users, e.g. the submitted queries, and an implicit
feedback on the quality of the retrieval system, e.g. the clicks.

In this work, we consider a query log coming from Europeana portal5, rel-
ative to the time interval ranging from August 27, 2010 to February, 24, 2011.
This is a six months worth of users’ interactions, resulting in 1, 382, 069 dis-
tinct queries issued by users from 180 countries (3,024,162 is the total number
of queries). We preprocessed the entire query log in order to remove noise
(e.g., stream of queries submitted by software robots instead of humans).

It is worth noticing that 1, 059, 470 queries (i.e., 35% out of the total) also
contain a filter (e.g., YEAR:1840). Users can filter results by type, year or

3http://www.unwto.org/facts/eng/pdf/highlights/UNWTO_Highlights10_en_HR.pdf
4http://www.europeana.eu/portal
5http://www.europeana.com/portal/

http://www.unwto.org/facts/eng/pdf/highlights/UNWTO_Highlights10_en_HR.pdf
http://www.europeana.eu/portal
http://www.europeana.com/portal/
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provider simply by clicking on a button, so it is reasonable that they try to
refine retrieved results by applying a filter, whenever they are not satisfied.
Furthermore, we find that users prefer filtering results by type, i.e., images,
texts, videos or sounds. Indeed, we measure that 20% of the submitted queries
contains a filter by type. This is an additional proof of the skillfulness of
Europeana users and their willingness to exploit non trivial search tools to
find their desired contents. This also means that advanced search aids, such
as query recommendation, would be surely exploited.

Similarly to Web query log analysis [128], we discuss two aspects of the
analysis task: i) an analysis on the query set (e.g., average query length, query
distribution, etc.) and ii) a higher level analysis of search sessions, i.e., se-
quences of queries issued by users for satisfying specific information needs.

3.3.1 Query Analysis

First we analyze the load distribution on the Europeana portal. An inter-
esting analysis can be done on the queries themselves. Figure 3.1(a) shows the
frequency distribution of queries. As expected, the popularity of the queries
follows a power-law distribution (p(x) ∝ kx−α), where x is the popularity rank.
The best fitting α parameter is α = 0.86, which gives a hint about the skewness
of the frequency distribution. The larger α the larger is the portion of the log
covered by the top frequent queries. Both [99] and [11] report a much larger α
value of 2.4 and 1.84 respectively from a Excite and a Yahoo! query log. Such
small value of α means that the most popular queries submitted to Europeana
do not account for a significantly large portion of the query log. The might
be explained by looking at and comparing the main characteristics both of
Europeana and Web search engines users. Indeed, since Europeana is strongly
focussed on the specific context of cultural heritage, its users are likely to be
more skilled and therefore they tend to use a more diverse vocabulary.

In addition, we found that the average length of queries is 1.86 terms, which
is again a smaller value than the typical value observed in Web search engine
logs. We can argue that the Europeana user has a more rich vocabulary, with
discriminative queries made of specific terms.

Figure 3.1(b) shows the distribution of the queries grouped by country.
France, Germany, and Italy are the three major countries accounting for about
the 50% of the total traffic of queries submitted to the Europeana portal.

Figure 3.2(a) reports the number of queries submitted per day. We observe
a periodic behavior over a week basis, with a number of peaks probably related
to some Europeana dissemination or advertisement activities. For example,
we observe several peaks between the 18th and the 22th November, probably
due to the fact that, in those days, Europeana announced to have reached a
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Figure 3.1: Frequency distribution of queries (a) and distribution of the queries
over the countries (b).

threshold of 14 million of indexed documents6.
Figure 3.2(b) shows the load on the Europeana portal on a per hour basis.

We observe a particular trend. The peak of load on the Europeana portal is in
the afternoon, between 15 and 17. It is different from commercial Web search
engines where the peak is reached in the evening, between the 19 and the 23
[19]. A possible explanation of this phenomenon could be that the Europeana
portal is mainly used by people working in the field and thus, mainly accessed
during working hours. From the other side, a commercial Web search engine
is used by a wider range of users looking for the most disparate information
needs and using it through all the day.

3.3.2 Session Analysis

To fully understand user behavior, it is important to analyze also the se-
quence of queries she submits. Indeed, every query can be considered as an
improvement of the previous done by the user to better specify her information
need.

Several techniques have been developed to split the queries submitted by
a single user into a set of sessions [29, 82, 95]. We adopted a very simple
approach which has proved to be fairly effective [128]. We exploit a 5 minutes
inactivity time threshold in order to split the stream of queries coming from
each user. We assume that if two consecutive queries coming from the same

6http://www.sofiaecho.com/2010/11/18/995971_europes-cultural-heritage-online

http://www.sofiaecho.com/2010/11/18/995971_europes-cultural-heritage-online
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Figure 3.2: Distribution of the searches over the days (a) and over the hours
(b).

user are submitted within five minutes they belong to the same logical session,
whereas if the time distance between the queries is greater, the two queries
belong to two different interactions with the retrieval system.

By exploiting the above time threshold, we are able to devise 404,237 ses-
sions in the Europeana query log. On average a session lasts about 276 sec, i.e.,
less than 5 minutes, meaning that, under our assumption, Europeana’s users
complete a search activity for satisfying an information need within 5 minutes.
The average session length, i.e., the average number of queries within a session,
is 7.48 queries. This number of queries is an interesting evidence that the user
is engaged by the Europeana portal, and she is willing to submit many queries
to find the desired result.

Moreover, we distinguish between successful and unsuccessful sessions. Ac-
cording to [35], a session is supposed to be successful if its last query has got a
click associated. To this end, we find 182,280 occurrences of successful sessions
in the Europeana query log, that is about 45% of the total. We notice that in
[35] it was observed a much larger fraction of successful sessions, about 65%.

Figure 3.3 shows the distributions of session lengths, both for successful
and unsuccessful sessions. On the x-axis the number of queries within a ses-
sion is plotted, while on the y-axis the frequencies, i.e., how many sessions to
contain a specific number of queries are reported. We expect successful ses-
sions contain on average less queries than unsuccessful ones, due to the ability
of the retrieval system to return early high quality results in successful session.
The fact that the session length distributions are very similar, suggests that
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Europeana Web Search Engines

avg. query terms 1.86 2.35 [99], 2.55 [128]
query distribution (i.e., power-law’s α) 0.86 2.40 [99], 1.84 [11]
avg. queries per session 7.48 2.02 [128]
% of successful sessions 45 65 [35]

Table 3.1: Europeana vs. Web Search Engines: a comparison on query log
statistics.

high quality results are not in the top pages, and that the Europeana ranking
can be improved in order to present interesting results to the user earlier, thus
reducing the successful session length with a general improvement of the user
experience.

Table 3.3.2 shows some statistics extracted both from the analysis of the
Europeana query log as well as from general purpose Web Search Engines
historical search data.

3.4 Query Recommendations

The problem of query suggestion is related to two related research fields
that have been traditionally addressed from different points of view: query
suggestion algorithms and recommender systems. Recommender systems are
used in several domains, being especially successful in electronic commerce.



78 CHAPTER 3. SEMANTIC QUERY RECOMMENDATIONS

They can be divided in two broad classes: those based on content filtering,
and those on collaborative filtering. As the name suggests, content filtering
approaches base their recommendations on the content of the items to be
suggested. On the other side, collaborative filtering solutions are based on the
preferences expressed by the users.

Due to their characteristic features, query suggestion calls for specifically
tailored algorithm being able to exploit all the additional information avail-
able in this scenario, such users session, click, query results, etc. Techniques
proposed during last years are very different, yet they have in common the
exploitation of usage information recorded in query logs. Many approaches
extract the information used from the plain set of queries recorded in the log,
although there are several works that take into account the chains of subse-
quent queries that belong to the same search session.

The authors of [12] exploit click-through data as a way to provide recom-
mendations. The method is based on the concept of Cover Graph. A CG is
a bipartite graph of queries and URLs, where a query q and an URL u are
connected if a user issued q and clicked on u that was an answer for the query.
Suggestions for a query q are thus obtained by accessing the corresponding
node in the CG and by extracting the related queries sharing more URLs.
The sharing of clicked URLs results to be very effective for devising related
queries.

Boldi et al.[29] introduce the concept of Query Flow Graph (QFG), an
aggregated representation of the information contained in a query log. A QFG
is a directed graph in which nodes are queries, and the edge connecting node
q1 to q2 is weighted by the probability that users issue query q2 after issuing
q1. Authors highlight the utility of the model in two concrete applications,
namely, devising logical sessions and generating query recommendation. The
authors refine the previous studies in [30, 31] where a query suggestion scheme
based on a random walk with restart model on the QFG is proposed.

Baraglia et al. [15] propose a new model for query recommendation, the
Search Shortcut (SS), which we describe in detail in the next section.

Query suggestion has been an effective approach to help users narrow down
to the information they need. However, most of the existing studies focus only
on popular queries. Since rare queries possess much less information (e.g.,
clicks) than popular queries in the query logs, it is much more difficult to
efficiently suggest relevant queries to a rare query.

Yang et al. [131] propose an optimal rare query suggestion framework by
leveraging implicit feedbacks from users in the query logs.

Broder et al. leverage the results from search engines as an external knowl-
edge base for building the word features for rare queries [38]. The authors
train a classifier on a commercial taxonomy consisting of 6,000 nodes for cat-
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egorization. Results show a significant boost in term of precision with respect
to the baseline query expansion methods. Lately, Broder et al. propose an
efficient and effective approach for matching ads against rare queries [37]. The
approach builds an expanded query representation by leveraging offline pro-
cessing done for related popular queries. Experimental results show that the
proposed technique significantly improves the effectiveness of advertising on
rare queries with only a negligible increase in computational cost.

Bonchi et al. [32] define the Term-Query graph, composed by QFG nodes
and additional nodes modeling terms within queries, and edges connecting any
term to the queries that contain it. They produce the suggestions computing
the center-piece subgraph induced by terms in the query submitted by the
user. Authors show that their method produce high quality recommendations
and works for long-tail queries, where other methods fail even to produce any
suggestion.

Several works exploiting the concept of entity were proposed. Meij et
al. [102] propose to return a list entities: they match the query and all its
possible n-grams against the entity labels in DBpedia and then experiment
several machine learning approaches to select the entities to suggest.

Szpektor et al. [139] exploit the concept of template, in order to learn rules
such as <CITY> flight → <CITY> hotel. Given these rules, if a user search
honolulu flight, the system is able to suggest the query honolulu hotels also
if the query never appeared in the logs. Their model is an extension of the QFG
with additional template nodes. The graph has edges that connect queries in
the QFG to templates and edges that connect templates if they cooccur in
the same session. A similar idea is proposed by Bordino et al. [33] which
propose the the EQGraph (Entity-Query Graph). The EQGraph contains en-
tities instead of templates, and there are edges connecting query with entities,
and entities with the other entities. The input of their recommender is not a
query but the current document visited by the user: they perform Personal-
ized PageRank computation starting from the entities contained in the visited
page, and recommend relevant query suggestions.

3.5 Search Shortcuts

The analysis conducted in Section 3.3 shows that the search experience
of the user interacting with Europeana could be improved. To this extent,
we now introduce an application exploiting the knowledge extracted from the
Europeana query log aiming at enhancing the interaction of users by suggesting
a list of possible interesting queries.

A search session is an interactive process where users continuously refines
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their search query in order to better specify their information need. Sometimes,
the successful query is not known in advance, but users might adopt concepts
and terminologies also on the basis of the results pages visited. Query recom-
mendation is a very popular technique aiming at proposing successful queries
as early as possible. The approach described below, exploits successful queries
from successful session to recommend queries that allowed “similar” users, i.e.,
users which in the past followed a similar search process, to successfully find the
information they were looking for, and it is able to catch non trivial semantic
relationships among queries.

We adopt the Search Shortcuts (SS) model proposed in [15] and its termi-
nology. The SS has a clear and sound formulation as the problem of recom-
mending queries that can reduce the search session length, i.e., leading users
to relevant results as early as possible.

Let U be the set of users of a WSE whose activities are recorded in a query
log QL, and Q be the set of queries in QL. We suppose QL is preprocessed by
using some session splitting method (e.g. [82, 95]) in order to extract query
sessions, i.e., sequences of queries which are related to the same user search
task. Formally, we denote by S the set of all sessions in QL, and σu a session
issued by user u. Moreover, let us denote with σui the i-th query of σu. For a
session σu of length n its final query is the query σun, i.e. the last query issued
by u in the session. To simplify the notation, in the following we will drop the
superscript u whenever the user u is clear from the context.

As previously introduced, we say that a session σ is successful if and only
if the user has clicked on at least one link shown in the result page returned
by the WSE for the final query σn, unsuccessful otherwise.

We define a novel algorithm that aims to generate suggestions containing
only those queries appearing as final in successful sessions. The goal is to
suggest queries having a high potentiality of being useful for people to reach
their initial goal. In our view, suggesting queries appearing as final in successful
sessions is a good strategy to accomplish this task.

The SS algorithm works by efficiently computing similarities between par-
tial user sessions (the one currently performed) and historical successful ses-
sions recorded in a query log. Final queries of most similar successful sessions
are suggested to users as search shortcuts.

Let σ′ be the current session performed by the user, and let us consider
the sequence τ of the concatenation of all terms with possible repetitions ap-
pearing in σ′t|, i.e. the head of length t of session σ′. Then, we compute the

value of a scoring function δ (τ, σs), which for each successful session measures
the similarity between its queries and the set of terms τ . Intuitively, this sim-
ilarity measures how much a previously seen session overlaps with the user
need expressed so far (the concatenation of terms τ serves as a bag-of-words
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model of user need). Sessions are ranked according to δ scores and from the
subset of the top ranked sessions we suggest their final queries. It is obvious
that depending on how the function δ is chosen we may have different recom-
mendation methods. In our particular case, we opt for δ to be the similarity
computed as in the BM25 metrics [123]. The choice of an IR-like metric al-
lows us to take much care of words that are discriminant in the context of
the session to which we are comparing. BM25, and other IR-related metrics,
have been designed specifically to account for that property in the context
of query/documents similarity. We borrow from BM25 the same attitude to
adapt to this condition. The shortcuts generation problem has been, thus,
reduced to the information retrieval task of finding highly similar sessions in
response to a given sequence of queries. In most cases, it is enough to use only
the last submitted query to propose optimal recommendations.

The idea described above is thus translated into the following process. For
each unique final query qf contained in successful sessions we define what we
have called a virtual document identified by its title and its content. The title,
i.e., the identifier of the document, is exactly query string qf . The content of
the virtual document is instead composed of all the terms that have appeared
in queries of all the successful sessions ending with qf . At the end of this
procedure we have a set of virtual documents, one for each distinct final query
occurring in some successful sessions. Just to make things more clear, let us
consider a toy example. Consider the two following successful sessions: (dante
alighieri → divina commedia → paolo e francesca), and (divina commedia →
inferno canto V → paolo e francesca). We create the virtual document iden-
tified by title paolo e francesca and whose content is the text (dante alighieri
divina commedia divina commedia inferno canto V ). As you can see the virtual
document actually contains also repetitions of the same terms that are consid-
ered in the context of the BM25 metrics. All virtual documents are indexed
with the preferred Information Retrieval system, and generating shortcuts for
a given user session σ′ is simply a matter of processing the query σ′t| over
the inverted file indexing such virtual documents. We know that processing
queries over inverted indexes is very fast and scalable, and these important
characteristics are inherited by our query suggestion technique as well.

The other important feature of our query suggestion technique is its ro-
bustness with respect to rare and singleton queries. Singleton queries account
for almost 50% of the submitted queries [129], and their presence causes the
issue of the sparsity of models [3]. Since we match τ with the text obtained
by concatenating all the queries in each session, we are not bound to look
for previously submitted queries as in the case of other suggestion algorithms.
Therefore, we can generate suggestions for rare queries of the query distribu-
tion whose terms have some context in the query log used to build the model.
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3.6 Semantic Query Recommendation

3.6.1 Hidden Knowledge in Search Sessions

A search session is an interactive process where users continuously refine
their queries in order to better specify their information need. Sometimes, the
successful query is not known in advance, but users might adopt concepts and
terminologies also on the basis of the results pages visited. The approach de-
scribed here, exploits successful queries from successful sessions to recommend
queries that allowed “similar” users, i.e., users which in the past followed a
similar search process, to successfully find the information they were looking
for, and it is able to catch non trivial semantic relationships among queries.

Even if query logs hide precious knowledge that can be profitably exploited
for many applications, they contain a lot of noise. In the Europeana query
log, several kinds of noise could be identified: i) multiple representation of the
same entity, due to different languages (e.g., en/Divine Comedy vs. it/Divina
Comedia), or different way to denote the same entity (e.g., leonardo, or da
vinci, are both referring to the painter Leonardo Da Vinci), ii) homonyms
(e.g., the term war refers to several different historical events), iii) multi-goal
search sessions, when users search for multiple loosely connected information
pieces in the same search session (e.g. search for Inferno and for Gioconda). In
order to be able to provide good search terms recommendations it is mandatory
to remove most of the noise from the recommendation index.

These problems are well known within annotation systems literature [57,
65, 89, 110] which we described in Section 1.3.4.

3.6.2 Semantic Search Shortcuts

In order to perform the mapping between a query and its associated entities,
we preliminary annotate query sessions and virtual documents. Most query
annotation approaches consider single queries and try to map them to an
entity. If a query is ambiguous, the risk is to always map it to the most
popular associated entity. On the other hand, by performing the mapping by
using all the queries in a user session, we can exploit other queries as a source
of contextual information and improve precision remarkably.

The Collective Entity Linking approach proposed by Han et al. [65] was
implemented by using a recent dump of English Wikipedia, we adopted this
method because was easy to implement and authors reported it is more effective
than other available approaches. We direct interested readers to the original
paper for a detailed explanation of the annotation method. The dump contains
4,677,051 entities, denoted by 11,318,080 distinct spots, and interconnected by
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104,220,848 semantic relations. It is worth to observe that we used only the
English language part of Wikipedia. Even though queries in the query log
are written in different languages we decided to use the English version of
Wikipedia as it contains a large number of spots in other languages, in form
of anchors or redirects (e.g., Italian Divina Commedia is redirected to Divine
Comedy). We leave the investigation regarding the use of different languages
as future work.

By means of the Collective Entity Linking annotator we tagged the text
of each virtual document VD. More precisely, we keep track of each session
belonging to the content of the virtual documents, and we used the annotator
to identify mappings between queries and entities. Each identified entity is
then added to a new field entities of the virtual document. The annotator
provides a confidence value of every annotation proposed. We store also such
confidence value in the index. At the end of the process, our inverted index
contains a set of virtual documents, each one consisting of three fields: ti-
tle, content, and entities. We observe that by following this approach, if the
title of a given virtual document is affected by homonymy, the entities field
is likely to contain disambiguations representing some possible meanings. We
define Semantic Search Shortcuts (S3) the query recommender system exploit-
ing this new added knowledge that allows us to suggest queries by exploiting
the semantic relations among the current query and those submitted in the
past. Note that, differently from traditional recommenders that generate for
each query a flat list of recommendations, S3 provides a list of related entities.
Suggesting entities instead of textual queries can be convenient for a number
of reasons. First entities do not suffer from language issues. Moreover, the
enriched semantic of S3 recommendations enables a more user friendly repre-
sentation within the portal. For example, some kind of suggested entities (e.g.,
paintings, people) can be more clearly represented by images.

Given an input query q, in order to compute the entities to be suggested
we first retrieve the top-k most relevant virtual documents by processing the
query over the SS inverted index built as described in Section 3.5. The result
set Rq contains the top-k relevant virtual documents along with its associated
entities. Given an entity e in the result set, we define:

score(e,VD) =

{
conf(e)× score(VD), if e ∈ VD.entities
0 otherwise

where conf(e) is the confidence of the annotator in mapping the entity e in the
virtual document VD, while score(VD) represents the similarity score returned
by the information retrieval system. We then rank the entities appearing in
Rq using their score w.r.t. the query, as below:
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score(e, q) =
∑
VD∈Rq

score(e,VD)

3.7 Experimental Evaluation

We use a large query log coming from the Europeana portal, containing
a sample of users’ interactions covering two years (from August 27, 2010 to
January, 17, 2012). We preprocess the entire query log to remove noise (e.g.,
queries submitted by software robots, mispells, different encodings, etc). We
then apply a time-based session splitting technique. We use a threshold of 30
seconds between each consecutive query pair and we filter out sessions com-
posed by only one query. By doing so, we obtain 139, 562 successful sessions.
Finally, we use these successful session to build the inverted index as described
in Section 3.6.2.

3.7.1 Relatedness and Diversity

We are interested in evaluating two aspects of the set of suggestions pro-
vided. These are our main research questions:

Relatedness : How much information related to the original query a set of
suggestions is able to to provide?

Diversity : How many different aspects of the original query a set of sugges-
tions is able to cover?

In order to evaluate these aspects we borrow from the annotators the con-
cept of semantic relatedness between two entities proposed by Milne and Wit-
ten [110]:

rel(a,b) = ρMW(a,b) = 1− log(max(|in(a)|,|in(b)|))−log(|in(a)∩in(b)|)
log(|W |)− log(min(|in(a)|,|in(b)|)) (3.1)

where W is the set of all Wikipedia entities, while in(a) and in(b) are the sets of
Wikipedia articles linking to a and b, respectively. When |in(a) ∩ in(b)| = 0,
we have ρMW(a,b) = 0. In addition, ρMW is maximum (equal to 1) when
in(a) ∩ in(b) = in(a) = in(b), and thus all the articles that cite a also cite b,
and vice versa.

We extend this measure to compute the similarity between two set of en-
tities (the function in() gets a set of entities and returns all the entities that
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link at least on entity in the given set). At the same time, given two sets of
entities A, B, we define the diversity as div(A,B) = 1 − rel(A,B). Given a
query q, let Eq be the set of entities that have been manually associated with
the query. We define the relatedness and the diversity of a list of suggestions
Sq as:

Definition 1. The average relatedness of a list of suggestions is computed as:

rel(Sq) =

∑
s∈Sq rel(Es \ Eq, Eq)

|Sq|

where Es represents the set of entities mapped to a suggestion s (could contain
more than one entity in the manual annotated dataset). Please note that we
remove the entities of the original query from each set of suggestions as we are
not interested in suggesting something that do not add useful content w.r.t.
the starting query (Es \ Eq).

Definition 2. The average diversity of a list of suggestions is defined as:

div(Sq) =

∑
s∈Sq div(Es, ESq\s)

|Sq|

For each suggestion, we want to evaluate how much information it adds
w.r.t. the other suggestions. ESq\s denotes the union of the entities belonging
to all the suggestions except the current suggestion s.

Note that diversity and relatedness are very often two contrasting objec-
tives. In order to maximize relatedness, and algorithm should provide the
results being most related with the user query. On the other hand, such re-
sults are likely to be very similar to each other. The correct trade-off between
relatedness and diversity would be able to provide high quality results covering
multiple topics being relevant for the user query.

3.7.2 Evaluation Methodology

The evaluation of query recommendation techniques is an open issue. In
most cases, it is addressed by performing ad-hoc user studies. User studies
are time-consuming activities, very difficult to be repeated for comparative
evaluations of different methods. In this work, we intend to overcome the
problem by proposing a new way to evaluate query recommendation. In par-
ticular, we want to assess how query recommender systems performs in terms
of entities suggested thus enabling us to use the metrics (i.e., relatedness and
diversity) defined above. We built a dataset consisting in 130 queries split in
three disjoint sets. The 50 queries in the first set are short (composed by only
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one term). The second set contains 50 queries having an average length of
4.2 terms, while the 30 queries in the third set have an average length of 9.93
terms. For each query in the three sets, we compute the top-10 recommen-
dations produced by the SS query recommender system and we map them to
entities by using a simple interface providing an user-friendly way to associate
entities to queries. Three annotators participated to the manual annotation.
They manually annotated queries and their related recommendations with one
or more Wikipedia entities. An entity is represented by its title and its numer-
ical id, available in a recent English Wikipedia dump. The whole set of queries
and recommendations has been randomly divided in three distinct sets. Each
of those sets has been annotated by one annotator and cross-checked by the
other two.

The rationale of using different sets of queries varying for their length is that
we want to assess how our technique performs (in terms of entities suggested)
w.r.t. the length of the query. Short queries are, in fact, easier to manage as
they usually represent a single entity. Longer queries are more difficult as they
may be associated with more than one entity thus complicating the scenario.
The dataset has been made available for download7. Please note that each set
of queries also corresponds to a different class of popularity in the query log.
In particular, the first set is made up of queries that are typically in the head
of the power-law, while the second and the third set are made up of queries
in the torso/tail of the power-law. Furthermore, some of the queries in the
third set (containing the longest queries) are singleton queries (i.e., queries
that occur only once in the query log).

3.7.3 Experimental Results

We evaluate S3 by comparing its performance with those obtained with the
original version of the SS algorithm. In particular, for each set of queries in
the dataset described above (short, medium and long), we computed average
relatedness and average diversity.

Figure 3.4 shows the average relatedness computed for each query q belong-
ing to a particular set of queries. Results confirm the validity of our intuition
as, for all the three sets, the results obtained by S3 are always greater than
the results obtained by considering the SS suggestions. It is worth to observe
that the entities suggested by S3 are potentially completely different by the
entities annotated in the suggestions of SS. In fact, while in SS we are ex-
ploiting only the entities in the titles, in S3 we are leveraging all the entities
in the whole virtual document, using the virtual document relevance to boost

7Interested readers can download it from: http://www.di.unipi.it/˜ceccarel/sac13

http://www.di.unipi.it/~ceccarel/sac13
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Figure 3.4: Per-set average relatedness computed between the list of sugges-
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the most important entities. Furthermore, the longer the queries the more
difficult the suggestion of related queries. This happens because long queries
occur less frequently in the log and then we have less information to generate
the suggestions. If we consider single sets, the highest gain of S3 in terms of
average relatedness is obtained for medium and long queries: this means that
relying on entities allows to mitigate the sparsity of user data.

Figure 3.5 reports the average diversity of the suggestions over the queries
of each set. Here, we observe an opposite trend, due to the fact that the longer
the queries, the more terms/entities they contain, and the more different the
suggestions are. Furthermore, we observe that, for the most frequent queries,
SS has a very low performance w.r.t. S3. This happens because in the case
of frequent queries SS tends to retrieve popular reformulations of the original
query, thus not diversifying the returned suggestions. S3 does not suffer for
this problem since it works with entities thus diversifying naturally the list of
suggestions. We leave as future work the study of a strategy for suggesting
entities aiming at maximizing the diversity on a list of suggestions.

Let us clarify with the example in Table 3.2 how the two techniques be-
have differently. Given the query “dante”, SS returns the following suggestions:
dante banquet, dante boska komedia, dante paradiso, dante kupferstich, dante’s
divina, dante divine comedy, dante ali, dante alle. Please note the previously
highlighted behavior of SS. The suggestions it produces are often reformula-
tions of the same query, while S3 is able to expand the set of suggestions to the
entities: Divine Comedy, Dante Falconeri, Italian battleship Dante Alighieri,
Inferno (Dante), Ludovico Ariosto, Sándor Petõfi, Petrarch, Convivio with an
average relatedness of 0.48 (SS, 0.43) and a diversity of 0.40 (SS, 0.10).

SS Suggestions S3 Suggestions

dante banquet Divine Comedy
dante boska komedia Dante Falconeri
dante paradiso Italian battleship Dante Alighieri
dante kupferstich Inferno (Dante)
dante’s divina Ludovico Ariosto
dante divine comedy Sándor Petõfi
dante ali Petrarch
dante alle Convivio

Table 3.2: Suggestions provided for the query “dante”
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3.8 Summary

In this Chapter we propose an analysis of a large query log coming from
a digital library. We reused the concepts of session identification, time series
analysis, query chains and task based search when analyzing the Europeana
logs. To the best of our knowledge, this is first analysis of the user interaction
with a cultural heritage retrieval system.

Our analysis highlights some significative differences between the Euro-
peana query log and the historical data collected by general purpose Web
Search Engine logs. In particular, we find out that both query and search
session distributions show different behaviors. Such phenomenon could be
explained by looking at the characteristics of Europeana users, which are typi-
cally more skilled than generic Web users and, thus, they are capable of taking
advantage of the Europeana portal features to conduct more complex search
sessions.

For this reason, we believe that interesting knowledge can be extracted from
Europeana query log in order to build advanced assistance functionalities, such
as query recommendation. In fact, we investigated the integration of a state-
of-the-art algorithm into the Europeana portal.

We then explored the use of entities extracted from a query log to enhance
query recommendations. We presented our technique and we assessed its per-
formance by using a manually annotated dataset that has been made available
for download to favor the repeatability of experiments. The quality of sugges-
tions generated has been measured by means of two novel evaluation metrics
that measure semantic relatedness and diversity.
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Chapter 4

Learning Relatedness Measures
for Entity Linking

4.1 Introduction

Entity Linking is the task of detecting, in text documents, relevant mentions
to entities of a given knowledge base. To this end, entity-linking algorithms
use several signals and features extracted from the input text or from the
knowledge base. The most important of such features is entity relatedness.
Indeed, we argue that these algorithms benefit from maximizing the relatedness
among the relevant entities selected for annotation, since this minimizes errors
in disambiguating entity-linking.

The definition of an effective relatedness function is thus a crucial point in
any entity-linking algorithm. In this Chapter we address the problem of learn-
ing high-quality entity relatedness functions. First, we formalize the problem
of learning entity relatedness as a learning-to-rank problem. We propose a
methodology to create reference datasets on the basis of manually annotated
data. Finally, we show that our machine-learned entity relatedness function
performs better than other relatedness functions previously proposed, and,
more importantly, improves the overall performance of different state-of-the-
art entity-linking algorithms.

A typical entity linking system performs this task in two steps: spotting
and disambiguation. The spotting process identifies a set of candidate spots in
the input document, and produces a list of candidate entities for each spot.
Then, the disambiguation process selects the most relevant spots and the most
likely entities among the candidates. The spotting step exploits a given catalog
of named entities, or some knowledge base, to devise the possible mentions of
entities occurring in the input.

Let us introduce a simple example to describe how the entity linking process
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works:

On July 20, 1969, the Apollo 11 astronauts - Neil Armstrong,
Michael Collins, and Edwin “Buzz” Aldrin Jr. - realized President
Kennedy’s dream.

The text “President Kennedy” can be easily spotted and linked to John
F. Kennedy, since in Wikipedia there are 98 anchors exactly matching such
fragment of text and linking to the U.S. president page. In addition, the text
“Apollo 11” may refer to two distinct candidates: the famous spaceflight mis-
sion, or a 1996 film directed by Norberto Barba. Similarly, the text “Michael
Collins” may refer to either the well known astronaut, or to the Irish leader
and president of the Irish provisional government in 1922. Indeed, mentions
to the latter (408) are much more frequent than those to the former (141)1.

The above spots and the relative candidate entities are further processed
during the disambiguation step. The goal of disambiguation is twofold. First,
only relevant spots have to be filtered. For instance, the word “the” may
refer to the entity associated with the definite article, but this linking might
be relevant only for documents discussing the English grammar. Second, the
best candidate entity for each spot has to be selected. This is usually done by
considering the context of close mentions and by maximizing some measure of
relatedness among the linked entities [57, 50, 69, 110, 127]. In our example, the
astronaut “Michael Collins” and the “Apollo 11” spaceflight mission entities
are preferred since they are clearly strongly related to each other and to the
other entities found in the document, i.e., Buzz Aldrin and John F. Kennedy.

The effectiveness of the entity relatedness function adopted is thus a key-
point for the accuracy of any entity-linking algorithm. In this work we inves-
tigate to which extent a machine learning approach can be exploited to devise
a high-quality entity relatedness function. The main contributions presented
in this Chapter are:

• a formalization of the problem of devising high-quality entity relatedness
functions as a learning-to-rank problem;

• a novel technique to build benchmark datasets for learning and testing
entity relatedness functions;

• an extensive experimentation showing that our automatically learned
function outperforms state-of-the-art relatedness functions. More im-
portantly, our approach can improve the performance of a whole class of
entity-linking algorithms;

1Throughout this chapter, we use the 04/03/2013 dump, available at http://dumps.

wikimedia.org/enwiki/20130403/enwiki-20130403-pages-articles.xml.bz2

http://dumps.wikimedia.org/enwiki/20130403/enwiki-20130403-pages-articles.xml.bz2
http://dumps.wikimedia.org/enwiki/20130403/enwiki-20130403-pages-articles.xml.bz2
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On July 20, 1969, the Apollo 11 astronauts - Neil Armstrong, Michael Collins, 
and Edwin “Buzz” Aldrin Jr. - realized President Kennedy’s dream.

Irish leader

Astronaut

Film

Computational Linguist

John F. KennedySpace Flight

Film

s1

s2

s3

Figure 4.1: Entity relationships for spotting and disambiguation. Three
spots extracted from the above example are underlined: s1 = “Apollo 11”,
s2 = “President Kennedy”, and s3 = “Michael Collins”. The graph shows
relatedness edges connecting candidates entities. For simplicity of representa-
tion the candidates for spot s3 are omitted. Rectangles are used to indicate
correctly disambiguated entities, while ellipses refer to other candidate entities.

• an open source, publicly available framework for addressing the entity
linking problem and evaluating new algorithms in a fair test environment.

The Chapter is organized as follows. In Section 4.2 we formalize the prob-
lem of learning automatically a entity relatedness function. In Section 4.3
we discuss related works, and how entity relatedness functions are used in
the proposed approaches. In Section 4.4 we evaluate some machine learned
entity relatedness functions, and in Section 4.5 we evaluate their impact on
entity linking algorithms. Finally, in Section 4.6 we provide a summary of the
Chapter.

4.2 Entity Relatedness Discovery

Given a set of known entities E from a knowledge base KB, and an un-
structured text document D, entity linking aims at identifying all the relevant
mentions in D to the entities of E . The entity linking process involves two
steps that we are going to detail in the following.

Spotting and Candidate Selection. Spotting aims at identifying spots, i.e.,
contiguous sequences of n terms (n-grams) occurring in D that might mention
some entity e ∈ E . A common method to identify the spots SD = {s1, s2, . . .} is
to exploit a controlled vocabulary of spots L, and to search the input document
for the n-grams that exactly match an entry of this vocabulary.
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When Wikipedia is used as KB, each Wikipedia article identifies an entity,
and the vocabulary L can be easily built by considering the article titles along
with the anchor texts of all internal Wikipedia hyperlinks.

Each spot si ∈ SD is then associated with a set of candidate entities C(si) ⊆
E . This is done by considering all the entities of E that are referred to in KB by
using spot si as an anchor text. Unfortunately the same spot si can occur in
different places of KB (and even of D!) and refer to distinct entities. Finally,
we denote by ε(si) ∈ C(si) the entity that is actually mentioned by si in D.

Figure 4.1 illustrates the three spots {s1, s2, s3} detected in our text ex-
ample. For each si, the outgoing dashed directed edges identify the set of
candidate entities C(si), where ε(si) ∈ C(si), i.e., the entity that is actually
mentioned by si, is represented as a rectangle.

To limit the set of spots and candidate entities to the most meaningful
ones, link probability and commonness properties can be usefully exploited
[105]. The link probability for a spot si is defined as the number of times si
occurs as a mention in KB, divided by its total number of occurrences. This
permits to discard spots that are rarely used as a mention to a relevant entity.
For example the spot “July 20”, introduced in the example of Section 4.1,
occurs hundreds of times in Wikipedia, and, even if it is the title of an article,
only in a few cases it used as anchor text.

The commonness of a candidate c ∈ C(si) for spot si is instead defined as
the fraction between the number of occurrences of si in KB actually referring
to c, and the total number of occurrences of si in KB as a mention to an entity.
For example, the spot “Michael Collins” may refer to more than 20 different
entities, but the Irish revolutionary leader (421 mentions, commonness 0.5),
the film about his life (126 mentions, commonness 0.15) and the astronaut
(132 mentions, commonness 0.15) are largely the most common.

Setting a threshold on minimum linking probability and minimum com-
monness has been proven to be a simple and effective strategy to limit the
number of spots and associated candidates, without harming the recall of the
entity linking process [110].

Disambiguation and Linking. Since in many cases we have several candi-
dates for a single spot si (i.e., |C(si)| > 1), the spot has to be disambiguated
by choosing the right entity ε(si) among the candidates C(si). For each spot,
a disambiguation algorithm outputs the selected entity and a confidence score.
This confidence score can be used to select the most likely matching entities,
and to trade precision with recall.

In order to choose the best entity for a spot, disambiguation may exploit
different signals and features. These include commonness and linking prob-
ability, and many others features considering the text surrounding the spot,
and the other spots of the document. The most important of such features is
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entity relatedness, usually defined as a real function ρ : E × E → [0, 1], where
0 and 1 are the minimum and maximum relatedness measure, respectively. To
guarantee the accuracy of entity linking, the entities selected by the disam-
biguation process to be linked to the detected spots have in fact to be strongly
related to each other.

Figure 4.1 shows the relatedness graph referred to our example. The selec-
tion of the best entities is often implemented on top of this relatedness graph,
where edges are weighted by some entity relatedness function. Therefore, the
role of such entity relatedness function is crucial for the accuracy of the dis-
ambiguation process.

Even if the definition of a entity relatedness function is not a trivial task,
several works agree on the effectiveness of the Wikipedia-based relatedness
function proposed by Milne and Witten [110, 109]. The relatedness between
two entities a and b is in this case computed by exploiting the graph structure
of Wikipedia:

ρMW(a,b) = 1− log(max(|in(a)|,|in(b)|))−log(|in(a)∩in(b)|)
log(|W |)− log(min(|in(a)|,|in(b)|))

where W is the set of all Wikipedia entities, while in(a) and in(b) are the sets of
Wikipedia articles linking to a and b, respectively. When |in(a) ∩ in(b)| = 0,
we have ρMW(a,b) = 0. In addition, ρMW is maximum (equal to 1) when
in(a) ∩ in(b) = in(a) = in(b), and thus all the articles that cite a also cite b,
and vice versa.

The ρMW function, promoting entities that are co-cited by the same Wikipedia
articles, is considered the state-of-the-art relatedness measure, adopted also
in [57, 89, 68]. On the other hand, there is no guarantee that ρMW would
produce a proper scoring of the candidate entities.

Example 4.2.1. Given the entities a=“Andronicus of Rhodes”, b=“Chondrichthyes”,
and c=“Aristotle” occurring in a document, we have that ρMW(a, b) = 0.54 and
ρMW(a, c) = 0.562. The connection between entities a and c is very strong since
Andronicus of Rhodes is credited with the production of the first reliable edition
of Aristotle’s works. The (unexpected) high relatedness score between entities
a and b is instead due to a single co-citing Wikipedia article (which is c) that
reports about Aristotle’s studies of a group of fishes he named selachians, a.k.a.
chondrichthyes. Therefore, in this case a single co-citation is enough to pro-
duce an unexpected high value ρMW(a, b), which is similar to the expected large
value of ρMW(a, c).

2The values to compute the two ρMW measures are: |in(a)| = 24, |in(b)| = 261, |in(c)| =
3502, |in(a) ∩ in(b)| = 1, |in(a) ∩ in(c)| = 17, and |W | = 4, 255, 306.
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Another interesting observation is that ρMW is symmetric: Andronicus of
Rhodes is relevant to Aristotle, to the same degree Aristotle is relevant to
Andronicus of Rhodes.

Our claim is that a good entity relatedness function ρ can improve the
performance of a large class of entity linking algorithms. We propose a set of
properties that an optimal entity relatedness measure should satisfy, and we
formalize the problem of discovering a good entity relatedness function into a
learning-to-rank problem.

Relatedness as a Ranking Function. Suppose that an entity linking algo-
rithm identifies only two spots sh and si for a document D, and for these spots
it generates the two sets of candidate entities C(sh) and C(si) respectively.
Most disambiguation algorithms assume that if one of the candidate entities
in C(sh) is highly related to another entity in C(si), then it is very likely that
they are the entities ε(sh) and ε(si) actually mentioned by the two spots.

We claim that a good entity relatedness function ρ should promote the
relatedness of correct entities: given entity ε(sh), its relatedness with ε(si)
should be larger then that with any other candidate in C(si). This should
hold for every spot si 6= sh.

Proposition 4.2.1. Given D, SD = {s1, s2, . . .}, and, for each spot si, C(si)
and ε(si), a relatedness function ρ improves entity-linking accuracy if the fol-
lowing constraint holds:

∀sh ∈ SD, ∀si ∈ SD \ {sh}, ∀c ∈ C(si) \ {ε(si)} :

ρ(ε(sh), ε(si)) > ρ(ε(sh), c). (4.1)

Indeed, the constraint in Eq. 4.1 nicely fits into a learning-to-rank based
formulation [80]. The relatedness function ρ can be in fact modeled as a
ranking function, with entity ε(sh) used as a query. According to the above
Proposition, function ρ should score all the entities actually mentioned in
the document, i.e. ε(si) for all si 6= sh, higher than any other false-positive
candidate, i.e. c ∈ C(si) \ {ε(si)}) for all si 6= sh.

Given document D and spots SD = {s1, s2, . . . , sh, . . .}, we denote byRh
D =

∪i 6=hC(si) the set of candidates to be ranked for query ε(sh), and by EhD =
∪i 6=hε(si) the set of relevant entities for the query, where EhD ⊆ Rh

D. From an
information retrieval perspective, items in Rh

D are relevant for query ε(sh) if
and only if they belongs to EhD. Let us denote with πhρ the score descending
ordering of Rh

D induced by our ranking relatedness function ρ for query ε(sh).
According to Proposition 4.2.1, a scored list πhρ is effective when entities in
EhD are in the top positions of the list. We can thus measure the effectiveness
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of our ranking relatedness function by using common information retrieval
quality metrics such as NDCG [79]. In our context we define DCG(πhρ ) as:

DCG(πhρ ) =

|πhρ |∑
j=1

Jπhρ [j] ∈ EhDK
log(j + 1)

where πhρ [j] denotes the j-th item of the scored list, and JxK equals 1 if x is true
and 0 otherwise. NDCG is defined as the usual normalized version of DCG.

We can now introduce the Entity Relatedness Discovery problem we are
going to address in this paper by means of a learning-to-rank approach.

Problem 4.2.1 (Entity Relatedness Discovery).
Let D be a collection of entity-linked documents, where for each doc-
ument D ∈ D and every relevant spot si of SD we know ε(si). Given
the entity ε(sh) and the set Rh

D, a ranking relatedness function ρ
induces an ordering πhρ of Rh

D.
The Entity Relatedness Discovery Problem requires to find the func-
tion ρ that maximizes the ranking quality:

1

|D|
∑
D∈D

1

|SD|
∑
sh∈SD

NDCG(πhρ )

In our experiments, we chose to optimize NDCG to find a good entity
relatedness function, but we used several other ranking quality functions to
assess the goodness of results.

Unlike previous approaches, we do not suggest any new entity relatedness
function. Rather, we define a learning-to-rank framework to discover the op-
timal entity relatedness function.

4.3 Related works

In the following we discuss how the notion of entity relatedness is exploited
by state-of-the-art entity linking algorithms. Emphasis is given to the solutions
proposed in [110] and [89] and [57] which are the most relevant proposals
in the field, and they are all adopting ρMW as entity relatedness function.
We show that the entity relatedness function defined in Proposition 4.2.1 can
replace ρMW since it fits better the framework and the objectives of the above
algorithms.
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WikiMiner [110]. Given a document D, let us consider its spots SD and
for each spot si the associated set of candidates C(si). Let us suppose that a
subset of the spots are associated with only a single entity. We denote with
U ⊆ E the context : the set of unambiguous entities linked to spots in SD, i.e.,
U =

⋃
|C(si)|=1 ε(si). The WikiMiner algorithm exploits the entities in U as

safe reference points to help the disambiguation of the other ambiguous spots
for which |C(si)| > 1 holds. The idea is to select for every ambiguous spot of
SD the entity which is, on average, the most related with the “safe” entities in
U . The relatedness function adopted is ρMW. It is worth noting that not all
the entities in U have the same impact: an entity u ∈ U is in fact considered
of high quality if it is strongly related to the other entities in U , and if the link
probability of the corresponding spot is high. These two criteria allow a weight
wu, 0 ≤ wu ≤ 1 to be assigned to each entity u in U . Note that the main aim
of this weight is to reduce the impact of low-quality entities occurring in U .
When applied to our simple example, the low resulting weight would demote
the importance of the safe entity “July 20”.

Every candidate c in C(si) is scored according to the following function:

score(c | U) =
1∑
uwu

∑
u∈U

wu · ρMW(u, c). (4.2)

It is easy to show that the accuracy of the disambiguation would improve if
we adopted, instead of ρMW, a relatedness function ρ that satisfies our Propo-
sition 4.2.1.

Given an entity u ∈ U , we can rewrite Eq. 4.1 and derive as follows:

ρ(u, ε(si)) > ρ(u, c) ⇒
1∑
uwu

∑
u∈U

wu · ρ(u, ε(si)) >
1∑
uwu

∑
u∈U

wu · ρ(u, c) ⇒

score(ε(si) | U) > score(c | U)

Therefore, a relatedness function satisfying Proposition 4.2.1 would always
correctly rank entity ε(si) higher than any other candidate for the correspond-
ing spot si even when integrated in the WikiMiner framework.

Interestingly, the authors of [110] use machine learning to combine the
above relatedness score with other two features: commonness and context qual-
ity (measured as

∑
wu). They experiment with a training set built from 500

Wikipedia articles. However, machine learning is not exploited to improve the
relatedness function as in our proposal.

Referent Graph [89]. Referent Graph, a graph-based method still ex-
ploiting the relatedness function ρMW, is proposed in [89]. Let RG(V,E) be a
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weighted directed graph where the nodes includes all the spots si of SD and
candidates C(si). RG has a directed edge from si to every c ∈ C(si), and recip-
rocal edges connecting every pair of candidate entities a and b, a ∈ C(si), b ∈
C(sh), i 6= h. Spot-candidate edges (si, c) are weighted according to the cosine
similarity between the Wikipedia article corresponding to entity c and a lo-
cal context window of 50 words around the spot si. The candidate-candidate
edges (a, b) are weighted by using ρMW. Finally, weights are normalized so that
weights on outgoing edges from a given node always sum up to 1. The graph
shown in Figure 4.1 is a toy referent graph, where relatedness edges connecting
candidates entities for the spot s1 with candidates entities for the spot s3 are
omitted for clarity.

The score of a candidate entity for a given spot is given by the steady
state distribution of a random walk with restarts [114] in RG, where candi-
date nodes have restart probability 0, and spot nodes have a restart probability
proportional to their inverse document frequency score in the Wikipedia cor-
pus. Also in this case, assigning a different restart probability to spot nodes,
and weighting as above explained spot-candidate edges is aimed to limit the
impact of non relevant or incorrectly matched mentions.

The rationale of the random walk approach is to evaluate the relationships
among the whole set of candidates simultaneously, in contrast to previous
methods where the scores of candidate entities are assigned independently of
each other. Also in this algorithm the choice of the entity relatedness function
ρ has a strong impact on the performance since it drives the random walk
process. A set of entities being very related to each other is likely to produce
a reinforcement loop, and eventually include the most probable states of the
random walk.

Even if we do not provide a formal proof as for WikiMiner, it is clear that
a good relatedness function should promote the reciprocal relatedness among
the right entities in the graph, thus helping the random walk to converge to
the correct ranking of candidates.

A similar approach is used in [159], where a slightly differently weighted
referent graph is pruned progressively by removing iteratively the node with
the lowest weighted degree (sum of the weights of incoming edges). Even in
this case, the weights of candidate-candidate edges are computed with the ρMW

relatedness function. The paper do not compare performances with those of
[110], [89], or other algorithms, and it is thus difficult to estimate the impact
of this proposal.

TAGME [57]. TAGME is an annotation framework focussing on efficiency
that exploits two main features: commonness and the ρMW relatedness. First,
candidate entities for a spot si are ranked according to their average relatedness
with other candidate entities for spots sj 6= si, weighted by their commonness.
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Then, from the top 30% candidates of the resulting ranked list, the entity with
the largest commonness is finally selected.

Also this algorithm would benefit by a relatedness function satisfying Propo-
sition 4.2.1, since it would help to boost the score of the actual entities men-
tioned in the document. However, the benefit is limited, since the relatedness
function impacts more on the pruning irrelevant candidates, while the final
choice of the best entity is mainly driven by the commonness feature.

Other approaches. Relatedness function ρMW is partially inspired by
the so-called Normalized Google Distance (NGD) [48], which borrows from
Kolmogorov complexity and information distance concepts. While NDG is tai-
lored to measure similarity between words or phrases, ρMW measure is specif-
ically tailored to entities represented in a graph structure such as the one of
Wikipedia. In [59] another Wikipedia-based relatedness measure, named ESA,
is proposed. A word is represented in a high dimensional space by considering
for each Wikipedia article the relevances of the word in the article, and by
summing such score vectors for longer text fragments. Also [69] investigates
new text-based relatedness measures that try to go beyond link-based similari-
ties. The study conducted in [109] shows however that ESA has a performance
similar to that of ρMW, with the latter being much cheaper to be computed
since it does not require to index the whole Wikipedia textual content. In
[127], the authors improve only slightly the solution proposed in [50], but they
do not provide any comparison with [110, 89].

The authors of [149] propose a machine learning approach to rank entity-
based facets related to a given Web search query. Since the paper focuses
on a special set of entities, such as monument and celebrities, the presented
technique exploits information coming from image search queries and Flickr
image tags. The goal of [149] is not to discover the degree of relatedness
between entities, but rather to suggest entities that are most likely to generate
a large click through.

Aida [159] exploits a model similar to the one proposed in [89], where spots
and entities are both nodes in a graph and there are edges between spots
and entities and between couples of entities. The weights over the edges are
computed: i) from a spot s to an entity e: with a linear combination between
the prior probability p(e|s) that s links to e, and a similarity measure between
the spot and the textual context of the entity (anchors, title, relevant words..
) ii) from entity e to entity c using the ρMW relatedness measure. Instead
of a random walk, they propose an iterative process where in each step they
compute for each node e the sum of the scores of the incoming nodes in(e).
At the end of each step the entity with lowest score is removed, until only one
entity for spot remains.



4.4. ENTITY RELATEDNESS EVALUATION 101

4.4 Entity Relatedness Evaluation

In the following we describe the methodology adopted to build a reference
dataset for the learning process, the feature used to describe entities, and
finally the performance of two automatically learned relatedness functions.

4.4.1 Building a benchmark dataset

In order to evaluate the impact of different relatedness functions, we built a
benchmark dataset for Problem 4.2.1. This dataset, used to train and test our
relatedness function, contains a set of tuples in the form 〈ε,Rε, Eε〉, where ε is
an entity occurring in a document D, Rε is a set of candidate entities possibly
occurring in D, and Eε ⊆ Rε are the relevant entities occurring in D besides ε.

In order to build these tuples, we need both positive and negative ex-
amples, i.e., positive ones from Eε and negative ones from Rε \ Eε. In most
entity-annotated datasets, each document is annotated by one or more human
assessors, who manually performed some kind of spotting and entity disam-
biguation tasks. Therefore, for each document D we only have positive exam-
ples, i.e. the set AD of entities actually occurring in D. In addition, we do not
know the spot in D that actually mentions each entity in AD .

Hence, to generate our dataset for training our relatedness function, we
have to devise a sort of reverse annotation process, aimed at discovering the
spots associated with the known entities, and the potential candidates of such
spots. In this way, we identify also the negative examples to build the tuples
〈ε,Rε, Eε〉. In more detail, we generate our benchmark dataset as described
below:

1. we set up a knowledge base KB of entities based on Wikipedia. This
contains entities, their mentions, i.e, anchor text of incoming links and
page title, and the hyper-link structure; we created a vocabulary of entity
mentions L containing only spots with link probability larger than 2%.
Finally, for each spot we disregarded entities with commonness smaller
than 3%;

2. we generate all n-grams of every given document D, with n ≤ 6, and we
match them against L to devise the spots SD;

3. for each spot si in SD, we retrieve the candidate entities C(si) as the set
of entities linked in Wikipedia by the same n-gram;

4. we finally consider the set of relevant entities AD of D, as annotated by
the human assessors. Since we do not know the real association between
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each spot si and the human annotated entities in AD, for each spot si we
look for the actual entity ε(si) in the set C(si)∩AD. If C(si)∩AD = ∅, we
assume that ε(si) is not known, and thus discard si. If |C(si)∩AD| > 13,
we also throw away si, since we are not able to disambiguate. Finally, if
|C(si) ∩ AD| = 1, then ε(si) ∈ C(si) ∩ AD is the actual entity to link to
si.

At the end of the process, for each document D we have: a set of spots SD
and, for each spot si, a set of candidate entities C(si) and also the mentioned
entity ε(si).

Thus, for every spot sh of every document D, we can generate a tuple
〈ε,Rε, Eε〉 for the benchmark dataset that contains: (i) the actually mentioned
entity ε(si), (ii) the set of candidate entities for every other spot in the doc-
ument, and (iii) the set of correctly linked, and thus related, entities in the
document. By assuming that close spots are more likely to be related, we did
not consider in this tuple generation step those spots occurring at a distance
larger than ω = 150 characters from the current spot associated with entity ε.

In our experiments we used a subset of the CoNLL 2003 entity recogni-
tion [68] task dataset, which includes annotated news stories of the Reuters
Corpus V1. The dataset contains 1494 documents with an average length of
187 terms. Each document contains on average 11.7 entities.

We processed the corpus as explained above, and we thus built a dataset
for evaluating the relatedness containing over 1.6 million tuples. We split the
tuples in training, validation, and test set, respectively containing 977, 514,
369, 798 and 302, 529 records. Please observe that we take care of producing
each dataset from a disjoint subset of documents in the collection, so that the
tuples in the training and test sets were actually generated from a different
subset of documents.

4.4.2 Features

A pair of entities a and b, for which the relatedness ρ(a, b) has to be esti-
mated, is represented by a set of 27 features shown in Table 4.1. The choice of
such features is driven by the following considerations. First, we want to maxi-
mize their applicability by using publicly available data, and by using measures
that can be easily applied to other entity knowledge bases, e.g., FreeBase.4 For
this reason we do not use click-through, access log, or query log based data,
which are very difficult to obtain. We use instead several features related to

3In our datasets, this happens in only 2% of the cases.
4http://www.freebase.com/

http://www.freebase.com/
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the link structure of our knowledge base, such as the number of in-links in(e)
and out-links out(e) of an entity e.

Second, there are applications of the entity relatedness function where the
concept of spot is not applicable. Consider, for instance, the case of related
entity recommendation where the query is a entity that is not associated with
any spot. Therefore, we do not include features such as link probability and
commonness.

Finally, we do not include text-based similarity measures, such as cosine
similarity between Wikipedia articles pages, because this kind of approaches
have been proven to perform similarly to the ρMW measure, but are much more
computationally expensive [109].

Note that, by using the proposed machine learning approach, the feature
set we adopt can be easily enriched with any additional feature, or by analyzing
any other different knowledge base.

We categorize the features listed in Table 4.1 in three categories: singleton,
asymmetric and symmetric.

Singleton features regard a single entity. They include only frequency and
entropy, computed on the basis of the frequency of Wikipedia links to the
entity article page. These features are computed for both entities of a given
pair (a, b), resulting in four scores.

We claim that a relatedness function should not be symmetric. Consider
for example the entities Neil Armstrong and United States of America: it
seems reasonable that the relatedness of United States of America given Neil
Armstrong is greater than the relatedness of Neil Armstrong given the United
States of America. For this reason we included five asymmetric features, which
are computed in both directions of the pair, resulting in ten scores.

Last, we considered 13 symmetric features, such as ρMW. Some of these
features derive from asymmetric ones, and others are variations computed by
considering outgoing links of an entity instead of incoming ones.

All the above features are computed on the basis of the same Wikipedia
dump mentioned in the Section 4.1. Therefore, features are not extracted on
the training or test dataset.

4.4.3 Quality of entity relatedness

To solve the Entity Relatedness Discovery problem, we used an existing
tool for learning ranking functions, named RankLib.5 This includes the imple-
mentation of several effective algorithms. We report the results of the two most
effective: Gradient-Boosted Regression Trees [58] and LambdaMart [156]. We
denote the models built with those algorithm ρGBRT and ρλMART.

5http://people.cs.umass.edu/˜vdang/ranklib.html

http://people.cs.umass.edu/~vdang/ranklib.html
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Singleton Features

P(a)
probability of a mention to entity a:
P (a) = ‖in(a)|/|W |.

H(a)
entropy of a:
H(a) = −P (a) log(P (a))− (1− P (a)) log(1− P (a)).

Asymmetric Features

P(a—b)
conditional probability of the entity a given b:
P (a|b) = |in(a) ∩ in(b)| / |in(b)|.

Link(a→b) equals 1 if a links to b, and 0 otherwise.

P (a→b)
probability that a links to b:
equals 1/|out(a)| if a links to b, and 0 otherwise.

Friend(a, b)
equals 1 if a links to b,
and |out(a) ∩ in(b)|/|out(a)| otherwise.

KL(a‖b) Kullback-Leibler divergence:
KL(a‖b) = log P (a)

P (b)P (a) + log 1−P (a)
1−P (b) (1− P (a)).

Symmetric Features

ρMW (a, b) co-citatation based similarity [110].

J(a, b) Jaccard similarity: J(a, b) = in(a)∩in(b)
in(a)∪in(b) .

P (a, b)
joint probability of entities a and b:
P (a, b) = P (a|b) · P (b) = P (b|a) · P (a).

Link(a↔b) equals 1 if a links to b and vice versa, 0 otherwise.

AvgFr(a, b) average friendship: (Friend(a, b) + Friend(b, a))/2.

ρMW
out (a, b) ρMW considering outgoing links.

ρMW
in-out(a, b) ρMW considering the union of the incoming and outgoing links.

Jout(a, b) Jaccard similarity considering the outgoing links.

Jin-out(a, b)
Jaccard similarity considering the union of the incoming and out-
going links.

χ2(a, b)

χ2 statistic:
χ2(a, b) =(|in(b) ∩ in(a)| · (|W | − |in(b) ∪ in(a)|)+

−|in(b) \ in(a)| · |in(a) \ in(b)|)2·
· |W |
|in(a)|·|in(b)|(|W |−|in(a)|)(|W |−|in(b)|)

χ2
out(a, b) χ2 statistic considering the outgoing links.

χ2
in-out(a, b)

χ2 statistic considering the union of the incoming and outgoing
links.

PMI(a, b)
point-wise mutual information:
log P (b|a)

P (b) = log P (a|b)
P (a) = log |in(b)∩in(a)||W |

|in(b)||in(a)|

Table 4.1: Features for entity relatedness learning.
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Features Rank NDCG@5 NDCG@10 P@5 P@10 MRR

P(c|e) 1 0.68 0.72 0.47 0.33 0.80
J(e, c) 2 0.62 0.66 0.44 0.31 0.75
Friend(e,c) 24 0.59 0.64 0.42 0.31 0.71
ρMW (e, c) 19 0.59 0.63 0.42 0.31 0.72
Jin−out(e, c) 26 0.60 0.63 0.42 0.30 0.74
AvgFr(e, c) 3 0.57 0.62 0.40 0.30 0.69
P(e,c) 27 0.56 0.60 0.39 0.28 0.70
ρMW
in-out(a, b) 9 0.56 0.60 0.40 0.29 0.71
Jin−out(e, c) 4 0.54 0.58 0.39 0.28 0.67
ρMW
out (a, b) 17 0.52 0.55 0.37 0.27 0.65
χ2(e, c) 25 0.51 0.55 0.37 0.27 0.64
P(e|c) 22 0.48 0.54 0.36 0.28 0.60
H(c) 5 0.48 0.51 0.30 0.20 0.68
χ2
out(e, c) 16 0.47 0.50 0.34 0.24 0.61

AvgFr(c, e) 21 0.44 0.49 0.33 0.25 0.56
P(c) 13 0.47 0.49 0.29 0.19 0.66
PMI(e, c) 23 0.42 0.48 0.32 0.25 0.53
χ2
in−out(e, c) 11 0.44 0.46 0.33 0.23 0.58
P (e→c) 18 0.37 0.38 0.24 0.15 0.55
Link(e→c) 20 0.37 0.38 0.24 0.15 0.55
P (c→e) 12 0.35 0.36 0.22 0.14 0.52
Link(c→e) 15 0.31 0.33 0.21 0.14 0.46
KL(c‖e) 10 0.32 0.32 0.19 0.12 0.51
Link(c↔e) 14 0.28 0.29 0.17 0.11 0.45
KL(e‖c) 8 0.26 0.28 0.17 0.11 0.44
P(e) 6 0.08 0.11 0.06 0.06 0.17
H(e) 7 0.08 0.11 0.06 0.06 0.17

Table 4.2: Entity ranking performance with a single feature. Features are
sorted by NDCG@10.
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Features NDCG@5 NDCG@10 P@1 P@5 P@10 MRR

ρMW 0.59 0.63 0.62 0.42 0.31 0.72
ρλMART 0.75 0.79 0.80 0.51 0.36 0.87
ρGBRT 0.75 0.78 0.80 0.51 0.35 0.86

Table 4.3: Entity ranking performance of learned relatedness functions.

Note that the two models differ significantly in the objective function being
optimized. The ρλMART model was built by a list-wise algorithm and minimiz-
ing NDCG@10. This is indeed in perfect agreement with our definition of entity
relatedness problem, and with the benchmark created. On the other hand, the
ρGBRT model optimizes the error in predicting the class label (i.e., relevant vs.
not relevant) of a given instance. Therefore, the prediction can be used to
produce a ranking, but the model does not optimize the ranking directly.

In Table 4.3 we report the performance of the two relatedness functions
ρGBRT and ρλMART, and compare it against ρMW. The improvement of using
a machine learned function that exploits 27 features is apparent with every
ranking quality measure adopted. If we consider NDCG@10, ρMW improves
over ρλMART by a factor of 25% (it is worth to observe that, for how the dataset
was built, the maximum NDCG obtainable is 1). The two learned functions
have very similar performance, with no significant difference. Please note that
we also experienced other objective functions (MRR, MAP) obtaining similar
performance.

In order to gain some insight on the learned functions, and on the role
of the different features, we run a study based on a näıve feature selection
algorithm [61]. This algorithm ranks features by leveraging their similarity
and the score of single-features models. It promotes effective features and
demotes features similar to any other already selected one. Our objective here
is not to find the best performing subset of features, but rather to investigate
the importance of ρMW compared with other features not considered by state-
of-the-art algorithm.

We measured the performance of the models built by means of LambdaMart
algorithm when exploiting a single feature. In Table 4.2 we reported for each
feature the score it can achieve. Recall that the relatedness function is required
to learn a score of a candidate entity w.r.t. to a correct entity, which in the
table are denoted with c and e respectively. Therefore, P (c|e) is the conditional
probability of finding the candidate entity c given our actually mentioned entity
e, while P (c|e) is the converse.

Results are very similar for every quality measure. Let’s consider NDCG
@10. The function ρMW is the fourth most effective feature with a score slightly
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Figure 4.2: Multidimensional mapping of feature similarity computed using
Kendall’s τ coefficient. The size of each circle is proportional to the single-
feature model score.

below that of Jaccard and Friend functions. The most effective feature is P (c|e),
that is the conditional probability of the finding a mention to entity c given
a Wikipedia page that mentions the entity e. Note that this quite intuitive
feature behaves largely better than ρMW with a score of .72, but it is however
far from the score achievable with the full set of features. Also, note that
statistic P (c|e) comes from a collection being completely different from the
test set, since it was computed on the Wikipedia corpus and not on the train
collection. A third interesting property is the asymmetry of this feature.

The second column of Table 4.2 reports the rank assigned by feature selec-
tion algorithm. While P (c|e) is ranked first being the most effective features,
ρMW is ranked only 19-th. This is due to the heuristic strategy of the algorithm,
which demotes features if they are similar to previously selected ones.

Figure 4.2 shows the result of a multidimensional scaling mapping of the
27 features into a 2-dimensional space, thus approximately preserving feature
similarity. We measured the similarity between a feature pair according to
the Kendall’s τ coefficient. We can identify two interesting clusters. The first
contains ρMW together with Jin-out and χ2, and, indeed, the first two have
identical performance. The second cluster includes the two best performing
features P (c|e), P (e, c) and also Jaccard similarity. Even if the features in
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Figure 4.3: Incremental performance of ρλMART.

those clusters are similar w.r.t. the Kendall’s τ coefficient, the score of the
corresponding single feature model is very different, in particular for the best
scoring P (c|e). This suggest that the Kendall’s τ coefficient may not be the
best indicator in this context, and the feature selection may not be trivial.

Finally, in Figure 4.3 we measured the relative improvement provided by
each feature. Features are sorted according to the ranking given feature se-
lection algorithm mentioned above, and we measured the performance of the
model by adding features incrementally. The model achieves almost optimal
performance with the first 5 features. Optimal performance are achieved after
9 features are introduced in to the model. This shows that not all the features
are necessary, and that a wisely chosen subset of features can provide optimal
performance, or help in trading accuracy with efficiency. Several existing fea-
ture selection techniques can be used to this end. However, this is outside the
scope of this work.

4.5 Impact on Entity Linking

We run a set of experiments to show how the automatically learned relat-
edness function can be profitably exploited by a class of entity disambiguation
algorithms. We plugged the learned function into several annotation methods,
which can be considered the state-of-the-art ones:
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WikiMiner [110]. The method proposed by Milne and Witten that ex-
ploits the relatedness function to identify a subset of not ambiguous
entities called context. Given an ambiguous spot, the relatedness func-
tion is employed again to select the entity that is more coherent with the
context;

Referent Graph [66]. This method takes into account all the possible
entities associated with the set of detected spots. The disambiguation is
performed by modeling the entities as nodes of a complete graph, where
the weight of each edge is the relatedness between the connected nodes;

TAGME [57]. This annotator computes the weighted average relatedness
between an entity and all the other possible entities associated with the
spots. It disambiguates the entity by selecting the most common en-
tities in the subset of the possible meanings with the highest average
relatedness with the others.

With the exception of WikiMiner, the source code of the frameworks pro-
posed is not publicly available. Furthermore the code released is not easy
to extend for implementing other annotators. Annotation depends on several
subtasks, i.e., (i) process Wikipedia (parse the dump, generate the possible
spots, filter stop-words, etc.); (ii) perform the spotting (relying on a dictio-
nary or using a name entity recognition framework, like the Stanford Named
Entity Recognizer6); (iii) disambiguate the ambiguous spots, and (iv) rank
entity candidates.

It is worth to observe that a good performance obtained in the first tasks
may heavily impact on the performance of the whole system, as well as using
a different dump of Wikipedia (i.e., old dumps contain less entities, but also
have less ambiguity for each spot), or a different commonness or link proba-
bility thresholds. For these reasons, we strongly believe that for this kind of
research it is important to share a unique framework where these tasks are well
separated and easy to isolate in order to study their performance. This would
also allow us to experiment hybrid solutions combining subtask solutions of dif-
ferent methods (e.g., the TAGME spotter with the WikiMiner disambiguation
algorithm).

We developed Dexter [46], an entity annotator framework, containing sev-
eral utilities to manage the Wikipedia dump, a spotter based on the anchors
and titles extracted from the dump, and data structures for retrieving all the
features used by the annotators. Unlike WikiMiner, our framework does not
rely on an external database to store the labels. In addition, during the ex-
ecution it can maintain the model either on the disk or in main memory to

6http://www-nlp.stanford.edu/software/CRF-NER.shtml

http://www-nlp.stanford.edu/software/CRF-NER.shtml
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Referent Graph TAGME WikiMiner

ρMW ρλMART ρGBRT ρMW ρλMART ρGBRT ρMW ρλMART ρGBRT

P@1 0.59 0.68+15% 0.74+25% 0.78 0.81 +4% 0.80 +3% 0.78 0.86+10% 0.83 +6%

P@5 0.51 0.62+22% 0.61+20% 0.65 0.66 +2% 0.66 +2% 0.64 0.68 +6% 0.69 +8%

P@10 0.44 0.50+14% 0.51+16% 0.50 0.50 +0% 0.51 +2% 0.50 0.51 +2% 0.53 +6%

iPr=0.10 0.76 0.84+11% 0.87+14% 0.87 0.89 +2% 0.89 +2% 0.88 0.92 +5% 0.91 +3%

iPr=0.50 0.55 0.69+25% 0.70+27% 0.67 0.68 +1% 0.69 +3% 0.66 0.73+11% 0.77+17%

NDCG 0.64 0.70 +9% 0.72+13% 0.68 0.69 +1% 0.69 +1% 0.66 0.72 +9% 0.75+14%

MRR 0.73 0.81+11% 0.84+15% 0.87 0.89 +2% 0.89 +2% 0.87 0.92 +6% 0.90 +3%

NDCG@5 0.55 0.67+22% 0.68+24% 0.72 0.74 +3% 0.73 +1% 0.71 0.76 +7% 0.77 +8%

NDCG@10 0.57 0.68+19% 0.70+23% 0.70 0.70 +0% 0.71 +1% 0.69 0.73 +6% 0.75 +9%

Recall 0.76 0.77 +1% 0.77 +1% 0.68 0.69 +1% 0.69 +1% 0.64 0.70 +9% 0.75+17%

Rprec 0.46 0.58+26% 0.60+30% 0.56 0.58 +4% 0.58 +4% 0.56 0.60 +7% 0.64+14%

Table 4.4: Entity Linking performance

improve performance. The framework runs also on normal hardware, since we
exploit efficient data structures in order to maintain compressed data in main
memory.

We incorporated WikiMiner, TAGME, and Referent Graph in our frame-
work, in order to verify if our relatedness function is able to improve the annota-
tor performance. During the implementation, we slightly modified WikiMiner
and TAGME: in WikiMiner we decided to rank the entities using a linear
combination of commonness, link probability, and average relatedness with
the context (the authors employed a classifier trained with several features
that were heavy to retrieve); in TAGME we relied on our spotter that returns
all the possible spots detected in the text, while in the original version the au-
thors employ a specific policy for deleting spots in case of overlaps (we remove
overlapping annotations at the end of the process, relying on the final ranking
of the entities). We set the commonness threshold to 0.03 and we discard spots
with link probability lower than 0.02.

Note that we are not interested in the absolute entity-linking performance
of WikiMiner, TAGME, and Referent Graph, but rather on how the relat-
edness function impacts on the disambiguation process. For this reason, we
implemented all the three algorithms within the same framework, and thus
providing them with the output of the same spotter. For the same reason,
the results of the Web services implementation of WikiMiner and TAGME are
not reported. Those services use a different dump of Wikipedia, which is pro-
cessed in a different way (e.g., tokenization, etc.), and they exploit a slightly
different spotting algorithm, and this makes such results non significant within
the scope of this work. However, it is important to report that we observed
that our implementation always improves over the WikiMiner online service,
and that it behaves only slightly worse then TAGME after the top 5 results,
probably due to a different processing of Wikipedia.
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We compared the results obtained by embedding different implementations
of ρ: ρMW, ρλMART, and ρGBRT. Note that by embedding ρMW we are replicating
the original algorithms that we consider as baselines to evaluate our proposed
relatedness function.

The quality of the resulting algorithms is evaluated with the usual Precision@k
(k = 1, 5, 10), Recall, and NDCG measures. We also report the interpolated
precision at a certain recall cutoff r, iPr with r = 0.1 and r = 0.5, the Mean
Reciprocal Rank MRR and the Precision after R documents have been re-
trieved, where R is the total number of relevant entities for the document
(RPrec).

We remind that in this evaluation we want to evaluate the number of
correctly annotated entities for a given document ; the evaluation is not spot-
based, but we are rather considering the entity linking process as a whole, and
its goodness on the full document.

The test dataset adopted is the same as the one of previous experiment,
meaning that there is no overlap among the documents used for training the
function ρ, and the documents used to evaluate its impact on the entity anno-
tation process.

Table 4.4 reports the performance of the three annotators: for each annota-
tor we show the performance using the original ρMW relatedness function, and
then the effects of replacing the relatedness function with our learned related-
ness ρλMART and ρGBRT. The performance improvement given by the trained
functions is significant:

Referent Graph. The proposed functions improve the ranking of results,
in particular if we annotate only one entity per document using the ρMW

relatedness only the 59% is correctly annotated, while with ρGBRT the
percentage of correct documents is 74%. The relatedness function also
reinforces the correct entities, improving the final ranking on the top
entities as showed by the NDCG measure which exhibits from a 14% up
to a 25% of performance gain;

WikiMiner. ρGBRT improves both recall and NDCG, with gains superior to
10%. In both ρGBRT and ρλMART the entity annotated with the largest
confidence is correct in more than the 80% of the documents, with a
improvement of 6% (ρGBRT) and of 10% (ρλMART) with respect to ρMW;

TAGME. Recall, NDCG, and precision exhibit a positive improvement
(from 1% up to 4%). The reader will note that ρGBRT and ρλMART does
not improve TAGME in the same measure as the other annotators: this
is not surprising because the TAGME annotator is designed to manage
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short texts, and relies less on the relatedness and more on the common-
ness.

In general, the best result quality was obtained using the ρGBRT function.

4.6 Summary

In this Chapter, we have proposed a machine learning based approach
aimed at discovering the entity relatedness function that can better support
the entity linking task. We illustrated some of the properties that such function
should preserve, and we presented a simple method to generate a training set
form a collection of document human assessed entity linked documents. We
casted the problem of discovering a suitable entity relatedness function into
a learning to rank formulation. Our proposed approach is thus able to learn
how to wisely blend the available features to generate a good entity relatedness
function. We demonstrated that by exploiting our framework it is possible to
better estimate the relatedness of two entities, and to compare and improve
the performance of different state-of-the-art entity linking algorithms.



Chapter 5

On Generating News
Explanations

5.1 Introduction

The large amount of research work done in the last decade in the area of
recommender systems was mainly motivated by the great success this kind of
systems have, and are still gaining, in real-life Web applications. Amazon is
usually credited among the first ones to exploit the potential of these tools
to enhance user engagement. Recommender systems, however, are becoming
increasingly popular in diverse application domains. Originally used for prod-
ucts, recommender systems are now popular also for other types of data, such
as music, videos, queries, friends on social networks, news items, among others.

In this Chapter, we focus on news recommendations: due to the amount of
news items available, online news services deploy recommender systems that
help the users find potentially interesting news items. To the best of our knowl-
edge, these recommendations are displayed with a very shallow explanation of
why a given news item has been suggested for reading (e.g., a snippet of text
from the news item, or the number of views of the news item). However, even
in the case that a relevant news item has been recommended for a user, the
action of accessing the item will largely depend on how accurately the inter-
estingness is assessed by the user before clicking on the item. Not generating
an informative explanation might downgrade the performance of recommender
systems, their applicability and, consequently, their value for monetization.

Explaining news recommendation is the goal at-large of the research pre-
sented in this Chapter. In particular, we aim at enhancing the users’ expe-
rience on news platforms, such as Google News, Yahoo! News, and the alike
by motivating the recommended news items shown by means of a tool that
automatically generates brief, yet significant, explanations. Even though ex-
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plaining recommendations is a topic covered by the literature on recommender
systems [101, 25, 67, 152], researchers have mainly focused on evaluating ef-
fectiveness and the impact of explanations on increasing the number of clicks
(and, possibly, eventual purchases) from users. Choosing the right explanation
models to be used by a news recommender system is one of the challenges we
face in this research. Notably, these explanations do not aim at increasing
the click-through ratio of recommendations. Rather, they try to help a user to
realize whether a news item can be of her interest or not, by providing her with
additional information on the recommendations being proposed. The ultimate
goal is thus to inspire the trust and increase the engagement of users with news
platforms, by presenting a correct explanation on why the recommendation has
been shown.

Given a pair of news items, the one actually read in the past by a user
and the one suggested by the news recommender we generate a set of possible
explanations for the recommendation itself. We study the following types of ex-
planations: text-based explanations, which use similarity measures between the
source and recommended news items, entity-based which employ information
of named entities automatically detected in both news items, and usage-based
explanations, which are related to how users reached and consumed the news
items. It is important to remark that in this research we consider the news
recommender system as a black-box to foster the flexibility of the solution and
the independence from the underlining recommendation model.

Further, we developed a machine learning model out of a set of editori-
ally annotated explanations of the different types. We build a Markov Logic
Network [122] which is able to learn probabilities out of handcrafted rules
expressed in first order logic. All the possible dependencies among features
and explanations are taken into account seamlessly in the model generation
phase. Our solution is developed to be flexible with respect to the associ-
ated recommender system and for not disclosing any information about the
recommendation method adopted by the system enhanced.

We experiment our techniques on a dataset we specially build for this pur-
pose. We exploit the browsing traces contained in toolbar data of a popular
search service to extract pairs of news consulted consecutively by a user. For
each pair we make the assumption that the user has been recommended the
more recently read news by an oracle knowing that she read the first news item
in the pair. We ask editors to evaluate how explicative each explanation is, and
this editorial dataset is then used to learn the model. The results we obtain
show that the explanations automatically generated are relevant and useful in
order to learn the relationship between a news item and its associated recom-
mended news item. Furthermore, the model is able to rank different types of
recommendations for different news items, using the characteristics of both of
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them.

The Chapter is structured as follows. In Section 5.3 we present a brief
survey of the state of the art. Section 5.2 introduces the news recommen-
dation problem and the notation used. Section 5.4 presents the techniques
devised to automatically generate text-based, entity-based, and usage-based
explanations. In Section 5.5 we present the learning problem and a detailed
description of the methods used to select the most suitable explanation to a
given news item, as well as the features the model accounts for. In Section 5.6
we present experiments and the main findings. Finally, Section 5.7 presents
some conclusions.

5.2 Ranking Explanations for News Recom-

mendations

News systems usually exploit some recommendation algorithm able to sug-
gest one or more interesting news items being related to the news item a user
is currently reading. Explaining news recommendations consists in building
and ranking a predefined list of explanation templates.

Let I = {i1, i2, . . . , in} be the set of news items, and let E = {e1, e2, . . . , em}
the set of possible explanations. Given a source news item is, i.e., the news
item a user was reading, and a target news item it, i.e., the recommended news
item, we aim at ordering the elements in E according to their relevance or
elucidatory value. The ordering shall reflect how good the explanation is in
helping a user that read is in the past to take the decision of reading or not
news it. The idea is that the first explanation in the ordering has to be the
most explicative for the user.

The problem formulation is generic and there are many possible ways to
tackle this problem. In this paper we take two alternative paths:

• Static ordering is a straightforward method that does not require any
effort at recommendation time. In essence, the ordering of explanations
is decided once and for all, and it is never changed. However, one could
change the number of explanations combined to present the final, overall,
statement.

• Machine-learning based ordering In this setting we map the recom-
mendation explanation problem into a machine learning framework. In
particular, we represent explanations and recommendations in a com-
mon input feature space (which could include user and context data)
and learn a ranking function into a structured output space [49].
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Given a pair (is, it) ∈ I, with I = (I×I), such that at least a user has been
suggested a news item it after reading is, we denote with Y = {y1, . . . , y|E|},
with yj ∈ E, a ordering of E where the explanations are sorted in decreasing
order of relevance. If Y st denotes the output for (is, it), then yst1 is the best
explanation for it given is. The problem is to learn a function

f : I → Y, (5.1)

over a class of functions H, such that it minimizes a loss function ∆(Y, Ŷ )
measuring the penalty for making a prediction Y if the correct output is Ŷ . If
P (I, Y ) denotes the data generation distribution, then the goal is to minimize
the risk [150]:

f = arg min
f∈H

∫
∆(f(is, it), Y

st) dP (I,Y) (5.2)

Rather than evaluating the whole news items pairs space I, we restrict to
minimizing the empirical error on a training set T :

f = arg min
f∈H

∑
(is,it)∈T

∆(f(is, it), Y
st) (5.3)

Our goal is to find such f that, for a given pair of news items, is able to
predict the optimal ranking of the explanations in the set E.

As usual in machine learning methodology, at recommendation time the
learned function f is applied to the features extracted on-the-fly from the
news items and explanations are ranked accordingly.

Note that the problem formulation does not make any assumptions on what
algorithms are used by the news recommender system. This is a carefully in-
formed choice as we aim at building a system that is oblivious with respect to
the recommendation algorithm. This assumption has two major benefits. The
first one is that we can take our explanation method and adapt it to any news
site using any recommendation method and, being decoupled, any update on
the recommender system would not imply an update on the explanation sys-
tem. Secondly, we do not disclose any information about the recommendation
algorithm that is usually a, well-kept, trade secret.

5.3 Explanations

Most of the research in the last years on explanations has focused on evalu-
ating effectiveness and impact on users of existing explanations techniques. For
instance, Herlocker et al. [67] propose a taxonomy categorizing different ap-
proaches for explaining recommendations over three dimensions: (i) reasoning
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model: white box vs. black box explanations; (ii) recommendation paradigm:
content-base vs. collaborative filtering; and (iii) exploited information cate-
gories: user modeling, recommended items. The first dimension is the most
interesting to us. The authors support the choice of a black box model where
explanations are produced independently of the recommendation algorithm,
rather than a white box approach, where the explanations are generated on
the basis of the complex rules and techniques exploited by the algorithm, thus
being too complex to help the user in understanding the recommendations.
On the same line, Vig et al. [152] discuss the difference between transparency
and justification: the former allows the disclosure of how the system really
works, while the latter can be decoupled from the recommendation algorithm.
Often justifications are preferred because i) the real algorithm is difficult to
explain (e.g., matrix factorizations), ii) the algorithm is secret, iii) more flex-
ible design of the explanations. For these reasons, in this work we considered
the recommender system as a black box.

In [25] the authors discuss the trade-off between satisfaction and promotion.
In the first case the goal of the explanation is to improve the user experience,
while in the second the goal is to persuade a user to adopt an item. With
a preference towards user satisfaction, the authors propose a novel way to
evaluate the goodness of an explanation by asking the user to rate a recom-
mended item first on the basis of the explanation only, and then after having
inspected the item. We partially borrowed this idea in labeling of the dataset,
by allowing the user to view the title or the full content of the recommended
news.

In their works Tintarev and Masthoff [141, 142] describe most of the re-
search done in the area. They review several recommendation systems and
algorithms and they categorize them according to several criteria. The first is
the way recommendations and their explanations are presented: (i) top items,
(ii) similar to top item, (iii) predicted ratings for all items, and (iii) structured
overview. A second important criterion is the kind of benefit expected by the
explanations: (i) transparency explains how the system works; scrutability is
the capability that allows users to tell whether the system it is wrong; trust
to increase users confidence in the system; effectiveness to help users to take
good decisions; persuasiveness the ability of the system to convince users to
try or buy; efficiency the amount of time saved by the user in taking decisions;
and satisfaction the ability of increasing the ease-of-use or enjoyment by the
user. It is hard to create explanations that perform well on all criteria. In this
work we asked the assessors to rate mostly on the basis of effectiveness, but
also considering satisfaction and efficiency, but the framework can be adapted
to optimize other goals if a proper labeling of the data is provided.

Interestingly, Ahn et al. [4] present a personalized news system that, aim-
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ing at maximum transparency, allows the users to edit their interest profile,
affecting the provided recommendations. The user is modeled as a bag of
words, extracted from his browsing history, that can be modified at any time
by adding or removing words. However, the capability of editing the user pro-
files is not always beneficial, in particular they observed that the more changes
are done, the more harm is done to the system.

Text snippets are used in Web search to explain why results are relevant
for a given query. Thus, creating high quality snippets has been a recent topic
of interest. Kanungo and Orr [84] address the problem of generating query-
biased summaries that maximize readability. Traditional Web search snippets
are made up of document titles, text and urls, and confined to a particular
bounding box in the page layout. However, users can assess the relevance
of search results if these snippets contain other visual clues, like multimedia
objects, or elements that allow to interact with the contents of the results
page directly [64]. Finally, the problem of retrieving explanations has also
been studied for entity search [28].

5.4 Generation of explanations

We generate for each pair of read and recommended news items (is, it),
a small set of explanations going beyond showing only the title and a short
abstract of the news item and with the goal of letting the user understand
why the news item has been recommended to him and consequently increasing
the awareness on that. Therefore, one of the first problems we deal with
is to select what kind of explanations we have to generate and how. We
adopted a very pragmatic approach and we come up with a set of 16 different
explanations, grouped in three different classes according to the feature type
we use to generate them. In particular we distinguish between text-based,
entity-based, and usage-based explanations. In the following we report the
list of the 16 different kinds of explanations grouped by their class.

5.4.1 Text-based explanations

The explanations in this class have the common characteristic to be gener-
ated by exploiting the textual content in either the read or recommended news
items.

Similarity The recommended news item is similar to the one you are read-
ing. This explanation considers the similarity between the content of the
source and target news items. Similarity is computed by using cosine
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similarity with TF-IDF weighting, where the inverse document frequen-
cies are defined over a large collection of news items. The Similarity
explanation is triggered by a similarity score greater than a predefined
threshold τ , fixed to 0.4 in all our experiments. The motivation for this
explanation template is the following. News items are recommended,
generally, by showing the title and the first sentence. This presentation
methods might not be enough for the user and if we also add the infor-
mation about how high the similarity is between two news items then
we could indeed inform the reader about one of the possible reasons why
she might be interested in the news item.

SimilaritySnippet The explanation consists in providing a snippet con-
taining the two most similar sentences extracted from the read and rec-
ommended news items. Also in this case the cosine similarity is used.
The idea for this explanation is very similar to the previous one. Indeed,
the two sentences added to the motivation play the same role as the
snippets (i.e., query-biased summaries) in search engine results.

TargetSnippet This explanation is constructed by simply taking the first
two sentences appearing in the recommended news item. The idea, here,
is to increase the amount of content provided to the user. It is equivalent
to increasing the space devoted to the news recommendation to fit the
first two sentences. We include this template to evaluate the effect of
putting more text in addition to the title of the news item.

Tagsplanation [152] Both the read and recommended news items share tags
X. The explanation exploits the common tags X associated with the
read and recommended news items, if any. Tags are generated by taking
the 15 terms with the highest TF-IDF score from each news item.

5.4.2 Entity-based explanations

In this class fall explanations using entities, or images associated with them,
as a means to convey the reason why a news item has been recommended to
a user. Named entities are recognized and extracted with the SuperSense
Tagger.1

SharedEntity The recommended news item is interesting because it tells
about X as the one you are reading. The explanation tells to the user that
a given named entity X is shared between the read and recommended
news items. We conjecture a user might be interested by some particular

1http://sourceforge.net/projects/supersensetag

http://sourceforge.net/projects/supersensetag
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fact about an entity (e.g. a person, a movie, etc.) since he was reading
about that entity in the news item accessed.

TargetEntity The recommended news item is about X. The explanation
presents to the user the named entity X extracted from the recommended
news item if it does not appear in the read news item. The idea is to
give the user the information that might be more important to him, i.e.
the entity X of which the news item discusses.

DistinctEntities The news item you are reading and the recommended
one are about X and Y . The explanation presents the two main distinct
entities extracted from the read and recommended news items. The
idea is similar to the two previous types but we aim at increasing the
informativeness and capturing news diversity by adding one entity to the
explanation.

TargetImage The recommended news item is about X. The explanation
shows an image X associated with the main named entity represented in
the recommended news item. The image shown is taken from Freebase,
using the provided API2. The idea is that of “one picture is worth thou-
sand words” and we aim at increasing user awareness on the explanation
by adding the image depicting the main subject of the news item.

Images The read and recommended news items are about X and Y , respec-
tively. The explanation shows two images X and Y , associated with
entities represented in the read and recommended news items, respec-
tively. If X = Y , i.e., the news item refers to the same named entity,
the image is obviously shown only once. The purpose of this kind of
recommendation is the same as SharedEntity or DistinctEntities
but with a focus on images rather than textual description of the entities
involved.

SharedPlaces Both the read and recommended news items refer to the
places X, Y , ... The explanation proposes the geo-names shared be-
tween the source and target news items, if any. The purpose is to let the
reader understand the localization of the news item she is reading and
that she has received as a recommendation.

TargetPlaces The recommended news item refer to X, Y , ... This ex-
planation suggests that the recommended news item refers to some geo-
names. The idea, here, is the same as SharedPlaces but we let the

2http://wiki.freebase.com/wiki/Freebase_API

http://wiki.freebase.com/wiki/Freebase_API
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Source News:

NFL star Junior Seau re-
membered in surfing cere-
mony
OCEANSIDE, California (Reuters) -
Hundreds of surfers paid their respects to
Junior Seau on Sunday with a “paddle-
out” ceremony in the Pacific, just beyond
the beachfront home where the football
great and avid surfer committed suicide
at age 43 . . .

Target News:

Football great Junior Seau’s
brain to be examined
LOS ANGELES (Reuters) - Football
great Junior Seau’s brain will be exam-
ined for evidence of repetitive injuries
from his playing days following the re-
tired linebacker’s suicide in his California
beachfront home . . .

Queries The recommended
news item is about:
junior, seau

SharedEntity The recommended
news item is interest-
ing because it tells
about Junior Seau,
San Diego Chargers
as the one you are
reading

SharedPlaces Both the read and
recommended news
item refer to the place:
Oceanside, CA, US,
San Diego, CA, US

Images

The read and rec-
ommended news
items are about
Junior Seau

Figure 5.1: An example of explanations for sport-related news.

user think by herself of a possible relationship with the news item she is
reading.

Categories Both the read and recommended news items are categorizable as
X, Y , ... The explanation exploits the common categories (e.g., sport,
politics, etc.) associated with the read and recommended news item, if
any. Categories are provided by the news provider. The idea is to explain
the user that the interest in this news item can be due to the categories
it belongs.

5.4.3 Usage-based explanations

Explanations of this class are extracted by considering how news items are
accessed by users. We extract knowledge from toolbar data to explain with
some form of global statistics the recommendations produced.

Popularity The recommended news item is interesting because N users
have recently read it. The explanation highlights the popularity of the
recommended news item. This explanation is oblivious with respect to
the read news items and has the purpose of telling the user that the
recommended news item is important among users of the news platform.
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Source News:

Conservative factions domi-
nate Iran’s run-off elections
DUBAI (Reuters) - Iranian President
Mahmoud Ahmadinejad, now out of fa-
vor with Supreme Leader Ayatollah Ali
Khamenei, suffered more setbacks in a
run-off parliamentary election seen as a
pointer for next year’s presidential race. . .

Target News:

Heavy fighting rocks eastern
Syria: residents
AMMAN (Reuters) - Heavy fighting
between rebels and government troops
erupted overnight in the capital of an oil
producing province in eastern Syria, res-
idents and activists said on Sunday, the
latest escalation of violence in a tribal area
bordering Iraq

DistinctEntities The news items you
are reading and the
recommended one are
about Iranian Presi-
dent Mahmoud Ah-
madinejad and gov-
ernment troops

TargetSnippet AMMAN (Reuters)
- Heavy fighting be-
tween rebels and
government troops
erupted overnight in
the capital of an oil
producing province in
eastern Syria

SimilaritySnippet (Reporting by Khaled
Yacoub Oweis; Edit-
ing by Andrew Os-
born) ...”The fighting
subsided early in the
morning...

TargetPlaces The recommended
news items refer to:
Rif Dimashq, Syria

Figure 5.2: An example of explanations for geo-political news.

Queries The recommended news item is about S. The explanation is given
by the set S of terms shared among the past queries for which the rec-
ommended news item was retrieved and clicked. The motivation for this
explanation is that we want to give users a view-point consisting of the
terms other users were using to reach that news item.

TargetQueryBiasedSnippet The explanation consists in providing a query-
biased snippet X for the recommended news item. The snippet is ex-
tracted from the news item by using the openNLP3 framework and the
terms shared among the queries for which the news item was clicked.

SourceQueryBiasedSnippet Similar to TargetQueryBiasedSnippet
except for the fact that the terms used are those of the queries associated
with the read news item and not the recommended one.

Please observe that for each pair of news items, it is not always possible
to produce all the 16 explanations. For instance, the explanation Images can
be produced only if we are able to retrieve the image entities for both the
source and the target news items. Finally, note that snippets generated for
explanations contain two sentences and do not exceed 200 characters.

3http://opennlp.apache.org

http://opennlp.apache.org


5.5. MODELING AND LEARNING 123

To exemplify some of the explanations generated, Figures 5.1, and 5.2
contain two examples of source and target news items pair (is, it) along with
their explanations.

In the first example, the news items are both about Junior Seau, a linebacker
in the National Football League who died in May 2012. In the figure, we
present several types of explanations. All the explanations can be considered
good, with the only exception of the one based on the places. We noted that the
explanations based on places are rarely useful, but there are some situations in
which they are very important. In the second example, where the target news
item is about the fighting between rebels and government in Syria, places are
more relevant. Even if Syria is far from Iran to which the source news item
refers to, the news items are geo-politically related and we can rate good this
kind of explanation. We also point out that there are explanations that are
really not useful, for example the explanation produced with the Similari-
tySnippet method, that does not contain any information about the relation
between the news item and also does not say anything about the target news
item.

5.5 Modeling and Learning

This section introduces the main features of news items and recommenda-
tions that are being engineered in the system, and a briefly surveys the learning
model employed to rank explanations.

5.5.1 Features Used

Given a quadruple (is, it, eu, y) composed by source and target news items,
one of the explanations discussed in Section 5.4, and the results of the eval-
uations performed by our assessors, we extract the set of features described
in the list below. The features are used in the learning task and exploit both
the entities and the geo-names extracted from both the source and the target
news item.

COS the cosine similarity cosine(is, it) between the bag-of-word representa-
tions of both the read and the recommended news items;

E1 a binary value stating the presence or absence in the target news item it
of entities. This feature is 1 when there exists an entity in the text of it;

E2 a binary value stating if (E2 = 1) target and source news items share some
common entity;
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E3 a binary value stating if (E3 = 1) target and source news items share the
main entity, i.e. the entity appearing most frequently within the news
item;

SE1 the number of terms shared between the snippet in eu (if any) and the
labels of the entities recognized in the source news item is;

SE2 the number of terms shared between the snippet in eu (if any) and the
labels of the entities recognized in the target news item it;

ST1 the number of terms shared between the snippet in eu (if any) and the
title of the source news item is;

ST2 the number of terms shared between the snippet in eu (if any) and the
title of the target news item it;

SG1 the number of terms shared between the snippet in eu (if any) and the
geo-names in the source news item is;

SG2 the number of terms shared between the snippet in eu (if any) and the
geo-names in the target news item it.

Note that features SE1, SE2, ST1, ST2, SG1, SG2, are only generated for
explanations based on the snippets, i.e., SimilaritySnippet, TargetSnip-
pet, TargetQueryBiasedSnippet and SourceQueryBiasedSnippet.

5.5.2 Learning relevant explanations with Markov Logic
Networks

Given the variety of features embodied in the model, we would like to build
a class of functions f that are able to account for structured dependencies in
input features. We make use of the Markov Logic Networks (MLNs) of [122], a
joint model that combines first-order logic (FOL) and Markov networks. The
model is able to capture contextual information and long-range dependencies
between features, which are critical to the task addressed here.

Markov Logic Netwoks have been used elsewhere for a plethora of natu-
ral language and data mining applications, from entity recognition [130], dis-
ambiguation [51], co-reference resolution [71], extracting predicate-argument
relations [160] or even mobile robot map building [154]. A key advantage of
MLNs is that they allow to express semantically-rich formulas to capture a
variety of long-term dependencies between features in a seamless fashion. In
essence, they act as an interface layer between the learning process and the
domain knowledge engineering.
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Formally, MLNs are made up of two different components combined to
perform joint inference.

Markov Networks. Given a set of random variablesX = {X1, X2, . . . , Xn}
a graphical model represents its joint distribution X as a product of non-
negative potential functions P (X = x) = 1

Z
Πkφk(x{k}). Each potential φk

is defined over a sub-set of the variables x{k} and Z is a partition function
Z =

∑
x Πkφk(x{k}). A Markov Network or Markov Random Field is defined

by an undirected graph G, which contains a node for each variable, and the
model has a potential function for each clique in the graph. Provided that
P (X = x) > 0∀x, the distribution can be equivalently represented as a log-
linear model:

P (X = x) =
1

Z
exp(

∑
i

wifi(x)) , (5.4)

where the fi(x) are arbitrary feature functions of a sub-set of the variable’s
state. The most straightforward translation from Equation 5.4 is to assign one
feature corresponding to each possible state x{k} of each clique with its weight
being log φk(x{k}). Even though this representation leads to an exponential
number of functions in the size of the cliques, one is free to specify a much
smaller number of features, like logical functions of the state of the clique which
lead to more compact representations.

Given the observed values of some variables, probabilistic models aim at
finding the most probable joint state of the unobserved variables (inference),
and computing conditional probabilities of unobserved variables (conditional
inference). Both of these problems are #P-complete and applications usually
resort to approximations such as Markov Chain Monte Carlo (MCMC), most
notably Gibbs sampling [62].

First-order logic. A first-order knowledge base (KB) is a set of sentences
or formulas in first-order logic [60]. First-order Logic (FOL) formulas are
composed of four types of symbols, namely constants, variables, functions and
predicates. Constants represent objects in a domain of discourse (for instance,
words, explanations). Variables range over the objects (x,y). Function symbols
represent a mapping from tuples of objects to objects (positionOf ). Predicates
represent some relation between objects (hasEntities) or attributes of objects
(hasClick). Variables and constants may be typed, in which case variables
only range over objects of the given type (for instance, words and entities).

Furthermore, an atom is a predicate symbol applied to a list of arguments,
which may be variables or constants (e.g. hasWords(Obama, explanation1). If
the arguments are all constants, this is called a ground atom (hasClick(page1)).
Finally, a world is an assignment of truth values to all possible ground atoms.
A KB is a partial specification of a world in which each atom in it is true,
false or unknown. First-order logic allows for representing compactly complex
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relational structure. A central problem in logic is that of determining if a KB
is satisfiable, i.e., if there is an assignment of truth values to ground atoms
that makes the KB true [125].

Markov Logic Networks. A MLN L is a set of pairs (Fi, wi) , where
Fi is a FOL and wi is a weight assigned to the formula. The interest of the
MLN is that it can be viewed as a template for constructing Markov networks.
Given a set of constants C, a Markov Network ML,C is defined by:

• ML,C contains one binary node for each possible grounding of each pred-
icate appearing in L. The value of the node is 1 if the ground atom is
true, and 0 otherwise.

• ML,C contains one feature for each possible grounding of each formula
Fi ∈ L. The value of this feature is 1 if the ground formula is true, and
0 otherwise. The weight of the feature is the wi associated with Fi ∈ L.

This set-up allows for worlds that violate some constraints, which is not the
case in first-order logic, in which formulas are hard constraints; violating a
single formula has the same effect as violating all. When a world violates one
formula of the MLN it becomes less probable, but not impossible. The MLN
can be regarded as template for generating Markov Networks in the following
sense. Given different sets of constants, a MLN will produce different networks,
which might have different size but they will share regularities and parameters,
which are given by the MLN; for instance, all the groundings of the same
formula will have the same weight.

The probability distribution over the possible worlds is given by

P (X = x) =
1

Z
exp

∑
i

(wini(x)) =
1

Z
Πiφi(x{i})

ni(x) , (5.5)

where ni(x) is the number of true groundings of Fi in x, and φi(x{i}) = ewi .
MLNs have further interest in that most common probabilistic models can be
succinctly formulated as MLNs, including HMMs, CRFs, logistic regression,
Bayesian networks, and so on.

Markov Logic Networks rules

We make use of Alchemy,4 a software toolkit that provides a series of algo-
rithms for statistical relational learning and probabilistic logic inference, based
on the Markov Logic Networks representation.

4for more details about the framework and the syntax, please refer to http://alchemy.cs.

washington.edu/tutorial/tutorial.pdf

http://alchemy.cs.washington.edu/tutorial/tutorial.pdf
http://alchemy.cs.washington.edu/tutorial/tutorial.pdf
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In the following we illustrate some of the logic formulas that we used to
model the problem and to train the learning model. The domain developed
includes a number of ground terms, for instance:

Relevant(rec, expl)

Rank(rec, expl, rank)

HasExpl(rec,expl)

Similar(rec, similarity!)

Related(rec)

ShareEntities(rec)

TargetHasEntities(rec)

HasSourceEntityTerms(rec,expl)

We are interested in learning the probability that an explanation is relevant
for a particular pair of news items (i.e., Relevant), and the probability that
an explanation will have a certain rank for a recommendation (Rank). There
are several features we can exploit, for example: the possibility to produce
a certain explanation for the given pair of news items (HasExpl), the cosine
similarity between the news items (Similar, the ! near similarity means that
each recommendation must be associated with exactly one similarity score),
if the news items are related or not (Related), if they share some entities
(ShareEntities), etc. As a rule of thumb, each signal described in Section 5.4
will have a predicate to incorporate it into the model.

The system is described by means of rules in first-order logic; the following
two rules that define two straightforward facts:

!HasExpl(r,e) => !Relevant(r,e).

HasExpl(r,+e) => Relevant(r,+e)

The former means that when an explanation e cannot be computed for a pair
r, then the explanation is not relevant for r (the dot at the end of the rule
specifies an hard constraint), the latter denotes a set (the plus “+” symbol) of
rules (it instantiates the rule for each type of explanation e, e.g. Relevant(r,+e)

becomes Relevant(r,SimilaritySnippet ), Relevant(r,DistinctEntities )

. . . ) . The model learns, for each instantiated rule (e.g., HasExpl(r,IMAGES) =>

Relevant(r,IMAGES)), how much a particular explanation type is relevant for
an explanation.

Given the expressiveness of FOL, deriving rules is straightforward to pro-
duce. To reach a reasonably performing system, we devise several other rules
involving different types of features, like:

ShareMainEntity(r) => Relevant(r,+e)

TargetHasEntities(r) => Relevant(r,+e)

Related(r) => Relevant(r,+e)
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The MLN will learn a weight for each rule, out of a training file with a
set of ground atoms. Then, given a set of test instances, the system performs
inference and estimates the rank of a given set of explanations The weight for
each rule is learned by the MLN, from a training file consisting of a set of
ground atoms, one per line (the symbol ! represents the logic negation). A
fragment is shown in the following:

Relevant(R1,SHARED_ENTITIES)

Relevant(R2,TARGET_SNIPPET)

Relevant(R10,DISTINCT_ENTITIES)

!Relevant(R20,IMAGES)

!HasExpl(R20,IMAGES)

At the end of the inference, MLN will estimate the probability that a given
explanation is relevant. The following fragment of text shows an example of
the output produced by Alchemy:

Relevant(R0,SHARED_ENTITIES) 0.59599

Relevant(R0,TARGET_SNIPPET) 0.636986

Relevant(R0,SHARED_PLACES) 0.0670433

Relevant(R0,TARGET_IMAGE) 0.225027

The number on the righthand side is the probability computed, for the sake of
our purpose we consider relevant only those explanations having a probability
strictly greater than 0.5. Finally, we associate to each relevant explanation the
most probable rank given by the predicate Rank; i.e., we start considering the
list of relevant explanations and we put in the first position the most probable
explanation e for rank 1, that we remove e from the list and we select the most
probable explanation for rank 2, and so on.

5.6 Experiments

This section firstly introduces the dataset created for experimentation.
Given the novelty of the automatic explanation of news recommendation prob-
lem we compiled a dataset of news items and associated recommendations and
evaluated manually the goodness of each explanation. Next, we compare on
the basis of well-established metrics three different methods: a SVM-based
baseline, a static, i.e., frequency-based, method, and an MLN-based model.

5.6.1 Dataset

Since there is no benchmark dataset for the problem at hand, we created
an evaluation dataset as follows. The dataset contains quadruples in the form
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(is, it, e, r), this is, a pair of source and target news items, an explanation e
and a score r for e. This allows to evaluate the goodness of a given algorithm
at predicting r, or to derive the ranked list of explanations Y st and measure
the ranking performance as formalized in Eq. 5.3, using standard information
retrieval metrics.

The first step in creating the dataset consists in obtaining valid news items
pairs. Each pair should consist of the news item currently read and a recom-
mended news item. To avoid overfitting our dataset with recommendations
generated using a particular system we resort to exploiting the information
recorded by a popular search engine toolbar. The toolbar service logs the
pages visited by the users over time. We filtered only the pages from the Ya-
hoo! news portal producing for each user a chronologically ordered sequence of
news items. The hypothesis is that a perfect news recommender system should
be able to recommend for a given news item the immediately successive read
news item. On the basis of this assumption, we consider a pair of consecutive
news items in the logs as an evidence that some recommender system sug-
gested the second news item on the basis of the first one, and that the user
actually read both of them.

The dataset we are considering is made up of 121 distinct news items
forming 120 news pairs. The dwell time on the news pair is about 7 minutes
on average, meaning that both the news items were likely to be of interest to
the user. The pairs were selected randomly from the daily activity of over 100K
users. For each pair we generated the explanations as described in Section 5.4.

The perceived effectiveness of each explanation is assessed by human ed-
itors. For each pair (is, it) we showed in the same web page the full content
of the news item is and the title of the recommended news item it. However,
we give the possibility to the evaluator to expand it, if needed, to read its full
content. We also showed all the explanations produced and we asked to rate
each explanation with a mark between 0 and 5: don’t know (0), bad (1), fair
(2), good (3), excellent (4), perfect (5). Explanations are not labelled with
their types, and they are randomly permuted for each assessment, to avoid
bias. Figure 5.1 shows some of the explanations provided to the assessors for
the news items; the news items are topically related, since they share the same
topic, i.e., the death of the football player Junior Seau.

Assessors scored the explanations according to their capability at helping
the user in deciding whether or not the target news item is worth of being
read. This means that the explanation should make the relationship between
news items is and it clear. Nonetheless, it might happen that there is not a
clear relation between the pair of news items. This is very typical when the
user is reading the news of the day and switching between a variety of topics.
In this case, we asked the reviewers to rank higher the explanations that better



130 CHAPTER 5. ON GENERATING NEWS EXPLANATIONS

Explanations Evaluation Dataset
Number of Evaluators 5

Number of Evaluations quadruples (is, it, e, r) 1, 632
Distinct Pairs (is, it) 120

Avg. Explanations per Recommendation 8
Distinct is 29
Distinct it 98

Related pairs (is, it) 36
Not Related pairs (is, it) 84

Avg. Pairwise Cohen’s κ (scores) 0.42
Avg. Pairwise % agreement (scores) 68%

Avg. Pairwise Cohen’s κ (relatedness) 0.65
Avg. Pairwise % agreement (relatedness) 83%

Table 5.1: Dataset and Evaluation statistics

help the user in understanding that the news items are not content related. In
both cases, we believe that explanations help users to understand and exploit
news recommendations.

The dataset is divided in 6 bins, each one containing 20 news pairs, and
we asked five human editors to evaluate them. In order to measure the agree-
ment between the evaluators, the first bin was scored by every assessor. The
remaining 5 bins were scored by one assessor each.

Table 5.1 reports the statistics on the dataset obtained. On average 8
different explanations could be produced for each news item pair, resulting in
a total of 1, 632 evaluations, due to the overlapping evaluations on the first 20
news item pairs.

For evaluating the inter-annotator agreement, we considered the set of pairs
with an evaluation by all the annotators and we collapsed the scores in three
categories:

Positive containing the judgments that express a user’s opinion about the
effectiveness of an explanation, i.e., good (score = 3), excellent (score =
4), perfect (score = 5);

Negative the judgements revealing the user’s disappointment, i.e., fair (score
= 2), bad (score = 1);

Neutral if the user is indifferent to the explanation (don’t know (score = 0)).

We want to check if different users agree on the fact that, given a recommended
news, a particular explanation is useful or not. As showed in Table 5.1, the av-
erage pairwise Cohen’s kappa between the evaluators is κ = 0.42, that is proved
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to be [90] a significant agreement. Since inter-agreement score is reasonable,
we do not take into account the impact of personalization of explanations. In
the presence of a lower inter-annotator agreement, instead, a careful thought
on the impact of personal tastes on the explanation would have been in or-
der. In this case, we can conclude that personalization of explanation would
not make a significant difference when evaluating the effectiveness of our tech-
niques. Furthermore, Tintarev and Masthoff [142] found that personalization
does not improve effectiveness and may even get worse results.

Evaluators also marked if the current and the recommended news were
related by content, and we measured a pairwise agreement κ = 0.65. This
means that different users have often the same perception of the relatedness
of two news items, but on the other side, there are pairs that are related for
some users and not related for others (see for example the news shown in
Figure 5.2). Therefore, explanations could add a significant improvement in
helping users to decide if the recommended news item is related or not. For
this reason, if an evaluator marks a recommendation as not related, we ask him
to score the explanations based on how good they are in helping to detect the
unrelatedness. Finally, for each news pair we extracted the features described
in Section 5.5.1.

5.6.2 Effectiveness of Explanations

We assess in this section the effectiveness of the following explanation
strategies:

Popular explanation first [POP] For each recommended item we rank
explanations only on the basis of their popularity and relevance in the
training set, placing the most popular explanation first.

RankSVM-Based [SVM] We generate a SVM-based model using the rankSVM
library from Cornell [81]. We set the regularization parameter c to 20,
employed the L1-norm for regularizing the slack variables, and the 1-slack
algorithm in the dual for learning.

MLN-Based [MLN] We generate a Markov Logic Network-based model
using the methodology detailed in Section 5.5.2.

Results

We report the results of the different methods using traditional performance
metrics such as: Precision@k, Recall@k, F-measure@k with cut-offs k = 1, 2, 3,
Mean Average Precision (MAP), and Normalized Discounted Cumulative Gain
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Measure SVM POP MLN

NDCG 0.666 0.7360 0.8132
MAP 0.562 0.6469 0.744

@1
Precision 0.666 0.7729 0.7432
Recall 0.202 0.2325 0.2178

@2
Precision 0.55 0.7279 0.7131
Recall 0.32 0.4296 0.4196

@3
Precision 0.447 0.7135 0.7353
Recall 0.372 0.6372 0.6632

Table 5.2: Average performance of the different explanation ranking strategies,
computed using 10-fold cross-validation. In bold we highlight the best results.

(NDCG). We make the following two assumptions: (i) we consider an explana-
tion relevant if and only if an evaluator marked it as good, excellent or perfect,
(ii) in case of more than one judgement, we consider the average rate.

In particular, the choice of testing several cut-offs instead of just one, i.e.,
k = 1, and to evaluate NDCG and MAP is driven by the following motivation.
Our method is aimed at presenting a selection of explanations that would help
the news site users to better understand why one might be interested in reading
the news item. Therefore, one of the goals of the evaluation is to show how
more than one explanation is better for the reader.

Results achieved via 10-fold cross validation are presented in Table 5.2.
They show that POP, and MLN have similar performance in terms of precision,
recall, and F-measure for cut offs equal to 1 and 2, being the MLN superior
in terms of MAP and NDCG. In terms of NDCG, POP is about 10% better
than SVM, while MLN is about 21% better than SVM. In terms of MAP,
POP outperforms by about 14% SVM, while MLN is about 32% better than
SVM. We performed the Wilcoxon signed-rank test over each dataset, and
we found that MAP and NDCG results are statistically significant with a p-
value always lower than 5% (while the Wilcoxon test failed to reject the null
hypothesis for precision and recall at 1, 2, 3). Anyway, significance tests we run
on the results (and that we are including in the paper) show that MLN and
POP are always statistically significantly different from SVM. These results,
also, show that a MLN approach is, in general, more suitable for ranking
meaningful explanations in top positions. SVM underperforms compared to
those two methods, mostly because the dataset only contains a few relevant
explanations per item and the feature sparsity.

Table 5.3 shows for each type of explanation, the average score given by the
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AVG STD DEV MEDIAN MODE MAX MIN

SharedEntity 3.679 1.090 3 3 5 2
DistinctEntities 3.362 1.178 4 4 5 0
Images 3.296 1.298 3 3 5 0
TargetImage 2.946 1.217 3 3 5 0
TargetEntity 2.878 1.024 3 3 5 0
TargetSnippet 2.862 0.977 3 3 5 0
SourceQueryBiasedSnippet 2.299 1.072 2 2 5 0
TargetQueryBiasedSnippet 2.278 1.143 2 2 5 0
SimilaritySnippet 1.867 0.980 2 1 5 0
Similarity 2.200 1.175 2 1 5 0
Tagsplanation 1.667 0.679 2 2 3 1
TargetPlaces 1.484 0.651 1 1 3 0
SharedPlaces 1.438 0.769 1 1 4 0
Popularity 1.288 0.667 1 1 4 0
Categories 1.262 0.691 1 1 4 0
Queries 1.221 0.595 1 1 4 1

Table 5.3: Statistics of the scores assigned to different types of explanations

evaluators. Clearly, evaluators show preference for some type of explanations,
in particular the explanations based on the entities, the explanations based on
the images, and the snippet containing the first sentence of the target news
item. We also observe that MLN performs better than the other methods,
especially when the system displays three different explanations. The reason
behind these results is that MLN is able to learn the relations between the
different explanations, and the weight for different features in function of the
type of explanation and characteristics of the news items.

5.7 Summary

In this Chapter we investigated the novel problem of devising an effective
way to automatically explain news recommendations to enhance user experi-
ence on online news platforms. First we selected the sources and created a
dataset of news items and related recommendations from the data recorded
by the browser toolbar of a popular Web search service. Given a pair of news
items, the one actually read by a user and the one suggested by a black-box
recommender, our two-steps goal was thus to generate a set of suitable explana-
tions by exploiting pieces of information from content and context of the news
items, and then to rank these explanations on the basis of their expected use-
fulness. Regarding the generation of candidate explanations, we engineered the
methods for building automatically 16 different types of suitable explanations.
The techniques devised exploit text-based, entity-based, and usage-based fea-
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tures. Most of the features used to describe news and recommendations rely
on textual similarity between sentences or entities, but the most interesting are
extracted or enriched by exploiting external knowledge bases such as Freebase,
and browser toolbar data that record how the news items have been searched
for and consumed. We pursued two distinct strategies to address the problem
of ranking candidate explanations: (i) a static (explanation popularity-based)
approach, and (ii) a machine learning approach. Specifically, for the machine
learning approach we employed Markov Logic Networks for learning to rank
the set of explanations generated.

The model was trained with a human-assessed dataset, where we asked a
set of assessors to score the explanations generated for 120 pairs of news items.
Interestingly, we found that assessors usually prefer entity-based explanations.

Experimental results showed that the method provides high-quality expla-
nations, and it is able to outperform state-of-the-art structured learning to
rank approaches, by a percentage ranging from 10% (POP strategy) to 21%
(MLN strategy) in the case of NDCG measure. We also get similar figures in
the case of MAP. All the results are for cut-off equal to 3, which is a number of
explanation we argue to correspond to the right amount of explaining power
we want to express.



Chapter 6

Conclusions

In this Chapter we briefly resume the research work conducted during the
Ph.D. project, we recall the main contributions achieved, and discuss some
possible developments that can build over our results. Finally we report the
references to the papers (published and under revision) in which such contri-
butions are discussed and assessed.

6.1 Thesis Contributions and Future Work

This Ph.D. dissertation focuses on exploiting query log data together with
the Web Of Data to improve effectiveness and efficiency of WSEs.

We showed that query log data can be exploited to remarkably improve the
performance of the document repository used for snippet extraction. Our tech-
nique speeds up the WSE by exploiting a novel caching strategy specifically
designed for document snippets. Query log data allowed us to better under-
stand the characteristics and the popularity distribution of URLs, documents
and snippets returned by a WSE. We designed and experimented several cache
organizations, and we introduced the concept of supersnippet. A supersnippet
is the set of sentences of a document that are more likely to be retrieved for
building the snippet of future queries. We showed that supersnippets can be
built by exploiting query logs, and that a supersnippet cache can answer up
to 62% of the requests, remarkably outperforming the other state-of-the-art
caching approaches experimented. To the best of our knowledge, this is the
first work discussing a cache designed to relieve the load from document repos-
itory by exploiting the knowledge about the past queries submitted. For this
reason, several research directions remain open. One of the most important
open questions is related to how the document cache and the result cache
interact with each other. What is the best combination between the two of
them. What is the best placement option we can choose: is it better to keep
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them separated on different machines (thus allowing the exploitation of more
aggregate memory), or is it better to keep them on the same machine in order
to reduce network delays? How to manage dynamic updates of the cache? An-
other interesting question regards more strictly our supersnippet organization:
preliminary tests showed that dynamic supersnippets as the ones discussed
in this work outperform static ones. An open question is the evaluation of
the cost/performance ratio between these two different organizations, and the
analysis of possible aging effects over statically built supersnippets. One may
also investigate the effect of combining text compression and supersnippetting
to allow the cache to store more surrogates. Lastly, the possibility of building
supersnippets on the basis of the entities detected in the documents could be
investigated.

In Chapter 3 we performed a study of Europeana query log data, showing
detailed statistics on common behavioral patterns of users of the Europeana
portal. Our analysis highlights some significative differences between the Eu-
ropeana query log and the historical data collected by general purpose WSE’s
logs. In particular, we found out that the distributions of both query popu-
larity and search sessions are different. We enriched the user sessions recorded
in a long-term query log with Wikipedia entities, and we explored the use of
entities to enhance query recommendations. We extended a state-of-the-art
recommendation algorithm in order to take into account the semantic infor-
mation associated with submitted queries. Our novel method generates highly
related and diversified suggestions that we assess by means of a new evaluation
technique. The manually annotated dataset used for performance comparisons
has been made available to the research community to favor the repeatabil-
ity of experiments. This work opens many possible new directions for future
research. Among them we cite: i) the study of new measures to define the
quality of semantic query suggestions; ii) the refinement of our annotator to
manage multilingualism; iii) the enlargement and improvement of the dataset,
by also taking into consideration entity attributes.

Chapter 4 investigates entity relatedness, a measure estimating how much
two entities possibly mentioned in the same text are related. A precise estima-
tion on relatedness is very important for many entity-related tasks. For exam-
ple, annotation algorithms enhance entity-linking precision by disambiguating
entities in a way that maximizes the relatedness among the selected candidates.
The definition of an effective relatedness function is thus a crucial point in any
entity-linking algorithm. We addressed the problem of learning high-quality
entity relatedness functions, by formalizing entity relatedness as a learning-to-
rank problem. We proposed a methodology to create reference datasets on the
basis of manually annotated data, and we showed that our machine-learned
entity relatedness function performs better than other relatedness functions
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previously proposed. More importantly, we demonstrated that our function
improves the overall performance of different state-of-the-art entity-linking al-
gorithms. There are several promising directions for future work. For example
studying the impact of new features (e.g., categories, text, user clicks) from
both quality and performance perspectives, or analyzing if the importance of
features is influenced by the domain where relatedness is applied e.g., entity
suggestions, annotation of tweets vs annotation of web-pages. In order to
perform our experiments we designed a framework for entity linking, and we
implemented several state-of-the-art algorithms. We plan to share this frame-
work with the scientific community in order to facilitate the definition and
evaluation of entity-linking algorithms and the sharing of new datasets.

Last but not least, we considered the news domain, and we proposed to
enhance the effectiveness of news recommender systems by adding to each rec-
ommendation an explanatory statement that aims at helping the user to better
understand if, and why, the suggested item can be of her interest. We took into
account the news recommender system as a black-box, and we generated differ-
ent types of explanations employing pieces of information associated with the
news. In particular, we engineered text-based, entity-based, and usage-based
explanations, and made use of Markov Logic Networks to rank the explana-
tions on the basis of their effectiveness. The assessment of the model was
conducted via a user study on a dataset of news read consecutively by ac-
tual users. We showed that assessors usually prefer entity-based explanations,
and that we are able to produce high quality combinations of explanations of
news recommended to users. We conjectured that such an explanation system
can improve recommender systems since it allows users to promptly discrimi-
nate between interesting and not interesting news in the majority of the cases.
The work represents a first step towards generating meaningful explanations
of recommendations. Future research will try to learn the interplay between
explanations and other types of factors in a fully fledged recommender sys-
tem, like user engagement, dwelling time or perception on system quality. An
interesting direction to investigate would be that of learning non-trivial combi-
nations of different explanations, and measuring their direct impact on users.
In the case, the Markov Logic Network machinery could be useful to learn the
right way to merge them, in order to devise a readable friendly personalized
explanation.

6.2 List of Publications

This section lists the references to the papers – published or still under
review – produced during the Ph.D. studies. The list of the papers strictly
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related to the Ph.D. topic is organized to reflect the contributions presented in
the chapters of the thesis. Please note that results presented in Chapter 5 [27]
were carried out during a research period at Yahoo! Research (Barcellona,
Spain). At the end of this list we have two more papers, written during a in-
ternship at the Digital Enterprise Research Institute (Galway, Ireland).
In [40] we propose the Sindice-2011 Dataset, a real-world data collection
shared with the research community in order to make a significant step forward
in web entity search. The paper reports several statistics about the dataset,
useful for developing appropriate search systems. The dataset contains 11 bil-
lion statements associated with about 1.7 billion entities. In [41] we introduce
a method to help users in formulating complex SPARQL queries across mul-
tiple heterogeneous data sources. Even if the structure and vocabulary of the
data sources are unknown to the user, the user is able to quickly and easily
formulate her queries. Our method is based on a summary of the data graph
and assists the user during an interactive query formulation by recommend-
ing possible structural query elements. Initial experimentations show that our
method can significantly reduce the effort required to formulate a query.

Chapter 2 - Query Biased Snippets

Caching query-biased snippets for efficient retrieval D. Ceccarelli, C.
Lucchese, S. Orlando, R. Perego, F. Silvestri Proceedings of the 14th
International Conference on Extending Database Technology Uppsala,
Sweden, March 21-24, 2011;

Chapter 3 - Semantic Query Recommendations

When Entities Meet Query Recommender Systems: Semantic Search
Shortcuts D. Ceccarelli, S. Gordea, C. Lucchese, F.M. Nardini, R.
Perego Proceedings of the 28th Annual ACM Symposium on Applied
Computing, SAC ’13, Coimbra, Portugal March 18-22, 2013;

On suggesting entities as web search queries D. Ceccarelli, S. Gordea,
C. Lucchese, F.M. Nardini, R. Perego Proceedings of the 4th edition of
the Italian Information Retrieval Workshop Pisa, Italy, January 16-17,
2013;

Improving europeana search experience using query logs D. Cec-
carelli, S. Gordea, C. Lucchese, F. Nardini, G. Tolomei Research and
Advanced Technology for Digital Libraries - International Conference on
Theory and Practice of Digital Libraries, TPDL 2011, Berlin, Germany,
September 26-28, 2011.
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Discovering Europeana Users’ Search Behavior D. Ceccarelli, S. Gordea,
C. Lucchese, F. Nardini, R. Perego, G. Tolomei ERCIM News 86 July
2011.

Chapter 4 - Learning relatedness measures for entity link-
ing

Learning relatedness measures for entity linking D. Ceccarelli, C. Luc-
chese, S. Orlando, R. Perego, S. Trani Proceedings of the 22th ACM
International Conference on Information and Knowledge Management,
CIKM’13, October 27th - November 1st, 2013, Burlingame, CA, USA.

Dexter: an Open Source Framework for Entity Linking D. Cecca-
relli, C. Lucchese, S. Orlando, R. Perego, S. Trani Proceedings of the
Sixth International Workshop on Exploiting Semantic Annotations in In-
formation Retrieval (ESAIR’13), October 28th, 2013, Burlingame, CA,
USA.

Chapter 5 - News Explanations

Learning to Explain News Recommendations to Users R. Blanco, D.
Ceccarelli, C. Lucchese, R. Perego, F. Silvestri Submitted for review to
ACM Transactions on Intelligent Systems and Technology (ACM TIST);

You should read this! let me explain you why: explaining news
recommendations to users R. Blanco, D. Ceccarelli, C. Lucchese, R.
Perego, F. Silvestri 21st ACM International Conference on Information
and Knowledge Management, CIKM’12 Maui, HI, USA October 29 -
November 02, 2012.

Other Publications

Twitter Anticipates Bursts of Requests for Wikipedia Articles G.
Tolomei, S. Orlando, D. Ceccarelli, D., C. Lucchese Proceedings of the
CIKM 2013 Workshop on Data-driven User Behavioral Modelling and
Mining from Social Media, October 28th, 2013, Burlingame, CA, USA.

Introducing RDF Graph Summary with Application to Assisted
SPARQL Formulation S. Campinas, T.E. Perry, D. Ceccarelli, R.
Delbru, G. Tummarello 23rd International Workshop on Database and
Expert Systems Applications, DEXA 2012, Vienna, Austria, September
3-7, 2012;
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The sindice-2011 dataset for Entity-Oriented Search in the Web of
Data S. Campinas, D. Ceccarelli, T.E. Perry, R. Delbru, K. Balog, G.
Tummarello The first international workshop on entity-oriented search,
EOS’11 Beijing, China, July 25-29, 2011.
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